
Utts and Heckard’s

Mind on Statistics

Asia-Pacific Edition

Technical Manual

A. Jonathan R. Godfrey 1

ISBN: 9780170183024

1All comments or suggestions regarding this document should be sent to Jonathan Godfrey by

emailing <a.j.godfrey@massey.ac.nz>.

mailto:a.j.godfrey@massey.ac.nz




Contents

Preface v

0 Getting started with R and Mind on Statistics 1

0.1 Manual overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.2 What is R? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.3 Obtaining R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.4 Basic commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.5 Storing data: Objects, vectors, matrices, and data frames . . . . . . . . . . . . . 5

0.6 Importing data into R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.7 Importing data from the Mind on Statistics CD into R . . . . . . . . . . . . . . 6

0.8 Installing the necessary MindOnStats package . . . . . . . . . . . . . . . . . . . 7

0.9 Editing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.10 Exporting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.11 Getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

0.12 Learning more about R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Thinking statistically 9

1.1 What is statistics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Some statistical stories in real and complex problems . . . . . . . . . . . . . . . 9

1.3 Some examples of what can go wrong at the beginning of data investigations . . 9

1.4 The discovery of knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Gathering and preparing useful data 11

2.1 Data sets and types of investigations . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Some practicalities and challenges in planning data investigations . . . . . . . . 12

2.3 Types of data and variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Designing experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Some types of observational studies . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Some cautions in experiments and observational studies . . . . . . . . . . . . . . 13

i



3 Turning data into graphical information 14

3.1 Categorical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Graphs and plots for one continuous variable . . . . . . . . . . . . . . . . . . . . 21

3.3 Continuous and categorical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 More than one continuous variable . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Good graphs and bad graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Data features and summary statistics 31

4.1 Commenting on features of data . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Measures of location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Measures of spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Parameters, models and estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Investigating categorical variables and their relationships 37

5.1 Summarising and presenting categorical data . . . . . . . . . . . . . . . . . . . . 37

5.2 More than two categorical variables . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 One categorical variable: testing a set of proportions . . . . . . . . . . . . . . . 39

5.4 p-values and testing statistical hypotheses . . . . . . . . . . . . . . . . . . . . . 40

5.5 Testing independence of two categorical variables . . . . . . . . . . . . . . . . . 40

5.6 Risk, relative risk and misleading statistics about risk . . . . . . . . . . . . . . . 41

6 Probability essentials for data analysis 42

6.1 What is probability? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Where do values of probabilities come from? . . . . . . . . . . . . . . . . . . . . 42

6.3 What is a random variable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4 Expected values and standard deviations of random variables . . . . . . . . . . . 42

6.5 Three special distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.6 Normal probability plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Estimating proportions with confidence 47

7.1 Percentages and proportions abound . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 Confidence intervals for proportions . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3 Background for confidence intervals for proportions . . . . . . . . . . . . . . . . 48

7.4 Confidence intervals for the difference in two proportions . . . . . . . . . . . . . 48

7.5 Confidence intervals and decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.6 Sample size to estimate a proportion . . . . . . . . . . . . . . . . . . . . . . . . 49

ii



8 Analysis of variance: investigating effects of categorical variables on a continuous

variable 50

8.1 Some examples of data investigations that include continuous responses and

possible categorical explanatory variables . . . . . . . . . . . . . . . . . . . . . . 50

8.2 One-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.3 Assumptions and diagnostics for ANOVA . . . . . . . . . . . . . . . . . . . . . . 53

8.4 Other methods for investigating effects of a categorical variable on a continuous

variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.5 Multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.6 Two-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.7 More on continuous response and categorical explanatory variables . . . . . . . . 60

8.8 Models, notation and calculations for ANOVA . . . . . . . . . . . . . . . . . . . 60

9 Regression: investigating relationships between continuous variables 61

9.1 Some examples of data investigations that include continuous responses and

quantitative explanatory variables . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.2 Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9.3 Messages from residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9.4 Multiple regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.5 Some formulae in regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10 Interval estimation: one or two continuous variables 73

10.1 The sample mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10.2 Confidence interval for the mean of a continuous variable . . . . . . . . . . . . . 73

10.3 Difference between two means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

10.4 Confidence interval for difference between two means . . . . . . . . . . . . . . . 74

10.5 Tolerance intervals for individual values . . . . . . . . . . . . . . . . . . . . . . . 76

10.6 Confidence interval for a standard deviation . . . . . . . . . . . . . . . . . . . . 76

10.7 Sample size required to estimate a mean with a desired precision . . . . . . . . . 76

11 Testing hypotheses about means, proportions and variances in one and two

samples 77

11.1 Overview of statistical hypothesis testing . . . . . . . . . . . . . . . . . . . . . . 77

11.2 Testing hypotheses about a proportion . . . . . . . . . . . . . . . . . . . . . . . 77

11.3 Testing hypotheses about the difference in two proportions . . . . . . . . . . . . 80

11.4 Connection with testing independence in contingency tables . . . . . . . . . . . 80

11.5 Testing hypotheses about one mean . . . . . . . . . . . . . . . . . . . . . . . . . 82

11.6 Testing hypotheses about the mean of paired differences . . . . . . . . . . . . . 82

11.7 Testing hypotheses about the difference between two means . . . . . . . . . . . 83

11.8 Non-parametric tests and medians . . . . . . . . . . . . . . . . . . . . . . . . . . 83

11.9 Tests for one or two standard deviations . . . . . . . . . . . . . . . . . . . . . . 84

iii



11.10 The relationship between tests and confidence intervals . . . . . . . . . . . . . . 85

11.11 t-tests and ANOVA: correspondences and pitfalls of t-testing in real investigations 85

11.12 The rejection region approach to hypothesis testing . . . . . . . . . . . . . . . . 85

11.13 Sample size, statistical significance, practical importance and effect size . . . . . 85

12 More on probability, random variables and distributions 87

12.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

12.2 Probability rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

12.3 Independence and conditional probability . . . . . . . . . . . . . . . . . . . . . . 87

12.4 Using conditional probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

12.5 Bayes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

12.6 Continuous distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

12.7 A very special process — the Poisson . . . . . . . . . . . . . . . . . . . . . . . . 88

13 Sums and differences of random variables 89

13.1 Examples for which this chapter is needed . . . . . . . . . . . . . . . . . . . . . 89

13.2 Sums and differences of two random variables . . . . . . . . . . . . . . . . . . . 89

13.3 Means and variances of linear combinations of random variables . . . . . . . . . 89

13.4 Linear combinations of normal random variables . . . . . . . . . . . . . . . . . . 89

13.5 Sums of some other independent random variables . . . . . . . . . . . . . . . . . 89

13.6 The sample mean and the central limit theorem . . . . . . . . . . . . . . . . . . 90

13.7 Combining ‘errors’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

14 Some further data situations 91

14.1 A binary logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

14.2 Failure and survival data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Some useful (but not necessary) additional tasks 93

A.1 Using the script window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Installing additional packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

iv



Preface

This manual supports the Asia-Pacific edition of Utts and Heckard’s Mind on Statistics. It uses

the software known as R for as many examples from the text as possible. Many figures are also

reconstructed to illustrate the differnces between R and the software used by the authors to

generate the figures. Whenever the data for a specific example is not available to students, we

have chosen to present the technique using a different dataset from the book or made available

with the base installation of R.

Versions of R come and go. This manual can be easily updated for different versions of R,

but the text you are reading was created using version 2.15.2 which was released on 26 October,

2012. All code should work on other versions equally well. Please report any faults with the

code to the author.

Jonathan Godfrey <a.j.godfrey@massey.ac.nz>

October 31, 2012
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Chapter 0

Getting started with R and Mind on

Statistics

Note: The structure of this chapter and some of its sections are heavily influenced by the

R Technical Manual that accompanies the U.S. edition of the text. The author’s thanks are

gratefully extended to its authors and the publishers for copyright permission.

0.1 Manual overview

The purpose of this manual is to help you learn how to use the free R software to create

the graphs, reproduce the simulations, and perform the data analyses presented by Mind on

Statistics. This chapter will describe how to obtain R and give a brief introduction to the

software. The following chapters will provide specific commands for the examples in the book.

Line-by-line examples of R code will be provided for many of the examples demonstrated

in the text. Users of R are working in many different ways. The first observation is that R is

available to users of all major operating systems, and the code we all use is the same. If you

choose to use the version of R with pull down menus, you will still need to use the code given in

this manual somehow. You will either type it into R line by line at the prompt, or use the script

window within R to have a set of commands all editable at the same time. There are no screen

shots of R in this manual. This is done to future-proof the manual so that users down the track

are not confused by a different appearance and the consequential musings about ‘what have I

done wrong?’ which are real for some but an unnecessary distraction for all.

All chapter headings from Chapter 1 to 14 match those given in the Asia-Pacific edition

of Mind On Statistics; this extends to all sections, tables and figure references as well. Page

numbers refer to the textbook unless explicit mention of this manual follows the reference. An

index is given which lists many terms that are not explicitly mentioned in the Table of Contents

as well as most of the R commands used. This should help work backwards from R code so that

the reader can put a command into context. The pdf version of this manual has hyper-links

1



2 Chapter 0. Getting started with R and Mind on Statistics

and bookmarks to assist navigation, including links between the index and the text.

We assume that this manual is read after the relevant section of the main text. Full expla-

nations of why a particular technique is used are not given in this manual because we expect

the reader has purchased the main text and has this resource only to assist in using R.

0.2 What is R?

R is a computer language and environment that was developed with statistical graphics and

analysis in mind.

Consequently it is commonly thought of as a statistical software package, like the propri-

etary Minitab and SPSS packages. In the growing atmosphere of free software, scientists are

constantly making available new packages that enable R to perform very advanced modern

statistics. This manual, however, will focus on the more elementary aspects of R needed to

learn statistical concepts and successfully perform the statistics that you are likely to encounter

in your future careers.

There are several consequences of R being free software developed by scientists for scientists.

First of all, it is very powerful. If you decide to continue in a career that depends heavily on

statistics such as economics, biology, medicine, marketing, etc., R will allow you to develop

your own statistical functions specific to your own immediate needs. Secondly, it was created

as a tool for scientists rather than for mass marketing to make money. Thus it is line command

driven and lacks features as pull down menus and point-and-click commands. This results in

software that has a high ‘nerd factor’ as you will notice when looking at the help commands and

manuals. S-Plus, a proprietary software package, is almost identical to R with respect to line

commands, but includes pull-down menus and some point-and-click commands. There are some

pull-down menus in R but these are for the management of the software, not for performing

analyses.

There are a number of projects aimed at providing R users with a graphical user interface for

performing statistical analyses. None of these has met with uniform support to date, although

some are held in high regard — all have their critics too! We do not use any of these ‘front-ends’

because their development is fast-paced and we cannot provide a manual that keeps up with

the changes. All these front-ends rely on the code that appears in this manual to do the actual

work. Each front-end has its own manual so the interested user can investigate the advantages

of using a front-end if they choose.

The sharing of work among R users is extensive. When users have developed a set of

functions and datasets that are worthy of sharing, they are made available as a package. Add-

on packages number into the thousands and we certainly do not need to use time looking

through them until we find the functionality that is not part of the base distribution of R.
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0.3 Obtaining R

R is freely available via the website:

http://www.r-project.org

The first task to achieve when wanting to get the installation file for R is to choose a ‘CRAN

mirror’ which simply means to choose where we wish to obtain the file we need. There are lots

of options for servers around the world and you need to select one (probably close to you) now.

We now choose the operating system we are using. R is available for many platforms; choose

the most appropriate for you. Then look to download the ‘Base distribution’ of R. The vast

majority of users do not need source code or any additional packages at first.

If you are on the right track, you’ll now be downloading a file to your own PC. If you are

a Windows user, this is a file with a name something like R-2.12.0-win.exe — the name

includes the version number which is bound to change soon!

Once this file is on your own PC, you can start the installation by clicking on the file. We

recommend using the default options during the installation.

0.4 Basic commands

R can be used as a calculator, for example:

> 1 + 1

[1] 2

> 2 * 5

[1] 10

> 10/3

[1] 3.333

> 2^3

[1] 8

The lines of code that start with a greater than symbol > are typed in exactly as shown, and

executed once the ‘Enter’ key is hit. Extra spaces do not matter. If the command is incomplete

for some reason, the prompt will change from > to + to suggest you should add some more

detail.

These are the most basic things we can do in R. Almost everything else we will do is done

using commands entered at the prompt. A command needs to work on something, called an

argument. For example:

> sqrt(25)

[1] 5

http://www.r-project.org
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is the command for getting the square root of 25; in this instance the argument supplied to the

sqrt() command is 25. Sometimes arguments are variable names, sometimes necessary details

for the command, and sometimes even other commands. The parentheses are necessary and

must be paired.

We can assign the outcome from any calculation using the equals sign after a name. For

example:

> x = 25

> y = 1000

which has the benefit of then being able to be used as the argument for another command:

> sqrt(x)

[1] 5

Note that if we do assign a value to a name, R does not print the result for us. If we want to

know anything about the value(s) stored in a named object, we just type its name:

> y

[1] 1000

One of the greatest advantages R has is the ability to edit a previously issued command.

Hitting the up and down arrow keys moves us through the history of issued commands. Try

this now.

Other points to note are:� The hash character # tells R to ignore everything else until the Enter key is hit. This is

so we can add comments to our work.� R is case sensitive. mean is not the same as Mean, nor MEAN.� To see what objects have been created, use the ls() command. For this chapter we have:

> ls()

[1] "x" "y"� We can remove a named object from our workspace by using the rm() command.

> rm(x)

> ls()

[1] "y"� We can get out of our R session by typing q() at the prompt. We will be asked if we

want to save our session.
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0.5 Storing data: Objects, vectors, matrices, and data

frames

In the previous section, we showed how to store a single number to a named object. R can use

a name for objects of many kinds. A vector is just a single list of values all belonging together

as a single set. This might best be thought of as a variable because this is the most common

type of vector we will encounter. Two examples of how to enter a vector of values follow:

> Days = 1:30

> Days

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

[24] 24 25 26 27 28 29 30

> Months = c("April", "June", "September", "November")

> Months

[1] "April" "June" "September" "November"

The first example is a set of integers from 1 to 30. The second is a set of test strings, or

character values, which were entered using the c() command. Note how R printed out the

contents of the named object when we typed in the name. Take special note of the numbers

in square brackets. The first will always be a [1] because the next item listed is the first. If a

second row of elements is printed out because the set did not appear on a single line, then the

next number in square brackets tells you where in the list we are up to. This is quite useful

when we move to less trivial datasets.

A matrix is similar to a vector except that it has two dimensions, not one. A data frame is

different in that while it is two-dimensional, the contents are not all of the same type. Usually,

a data frame is made up of a collection of vectors which might differ in type — some numeric,

some textual. Each time we use a dataset throughout this manual we are working with a data

frame. We may create matrices for some analyses but this is the exception, not the rule.

0.6 Importing data into R

When data are transferred from person to person, we will not always get it in the desired

format. Whenever we want to import data into R we need to know how it is formatted. The

best options are text files or what are known as ‘comma separated values’ files.

Text files come in many forms, with extensions like txt, dat, etc. and in fact, even the csv

files we prefer are just text files too. The differences come from how the data are presented

in these files. A csv file has a single line for each row of the spreadsheet it came from with

all columns being separated by commas. Other text files use spaces or tabs to separate the

data and this often leads to confusion, especially if a cell in the original spreadsheet is actually

blank.

We suggest:



6 Chapter 0. Getting started with R and Mind on Statistics

1. Open your spreadsheet application and enter some data. Perhaps you have a dataset on

hand that could be used here.

2. Save this data as a ‘comma separated value’ file.

3. Move this csv file to your working directory in R. If you do not know where this is, type

getwd() at the command prompt in R.

4. Import the data into R using the read.csv() command. If your file is called MyFirstData.csv

then the command will be:

> MyData = read.csv("MyFirstData.csv")

5. See if it has been successfully imported by issuing a few commands: First is the dataset

the right size?

> dim(MyData)

Second, did the top row of the file get treated as we expected?

> str(MyData)

6. If it all worked then the default settings of the read.csv() command were suitable for

this dataset. If not, then we need to tell R that you did or did not have a header row of

variable names using:

> MyData = read.csv("MyFirstData.csv", header = TRUE)

or,

> MyData = read.csv("MyFirstData.csv", header = FALSE)

If successful, you now have a data frame stored in the current workspace with the name MyData.

Well done.

0.7 Importing data from the Mind on Statistics CD into

R

Importing data is one of the greatest headaches for users of all statistical software. Even

using cut-and-paste techniques can prove troublesome as the data may not transfer in the

expected fashion. We experienced enough grief working with the data supplied on the CD that

accompanies Mind on Statistics that we decided to help you avoid having to check the data
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over and over again. The MindOnStats package is the result of importing the datasets from a

usable format into R and then saving them as data files within R. Help pages for the data were

created (fairly sparse ones, actually) and the package created. All you need to do is to obtain

the package file from the same source as this manual and install it when you open R. To get to

the data within the package we will use the data() command and this is done in each chapter

a dataset is used.

0.8 Installing the necessary MindOnStats package

This manual assumes you have installed the add-on package we have developed called MindOn-

Stats. If you are a Windows user then you will find the package in a file called something like

MindOnStats-0.4.zip but note the last few numbers will change as the package is updated.

Users of other operating systems will use the file MindOnStats-0.4.tar.gz instead. These files

should be found in the same location where you obtained this manual.

Download the appropriate file to your local machine. Then open R and go to the ‘Packages’

menu. The menu item you want is the last one, ‘Install package(s) from local zip file. . . ’ —

well, that’s where it is for Windows users.

You should now be able to direct R to the zip file you saved on your machine. You will see

confirmation messages once R has finished with the installation. You are now ready to use the

datasets that accompany both the Asia-Pacific and United States editions of Mind on Statistics

by Utts and Heckard.

0.9 Editing data

Editing data within R is possible but best avoided. The edit() command will allow you to

edit the data concerned but the results must be assigned to a named object if they are to be

saved. Some experimentation might be required.

We recommend using the best software to do every job. A spreadsheet application is prob-

ably a better option for entering data than using the edit() command. Having entered data

into a spreadsheet, you should then see the section on Importing data into R.

0.10 Exporting data

The complementary command for read.csv() is write.csv(). This command needs to know

two things: First, what is the R data frame you want to export, and second, which file do you

want it stored in? This task is not required in this manual so we leave it to the interested

reader to investigate the help for the write.csv() command with the confidence that this is

an easily achieved task.
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0.11 Getting help

If you need help with the syntax of particular commands, such as the mean() command, you

might type ?mean or whatever command is of interest. It is probably a much better idea to

emulate the code given in an example from the text. That’s why this manual exists.

If you are not quite sure of the name for a particular task but have a key word in mind,

you can type ??bartlett — a person’s name in this instance. This gives you a list of the help

pages that have this word in them.

Other useful documents for R do exist. Unfortunately, some less than useful ones exist as

well. Students will need to be careful when choosing suitable resources. At this stage, it is

probably a good idea that students stick to the resources made available to them by the staff

responsible for their course.

0.12 Learning more about R

You will continue to learn more about R as you progress through this manual, which replicates

the examples from each chapter in Mind on Statistics. Although this manual will focus on more

introductory statistics, the potential for using R for statistical analysis is almost endless. There

always seems to be more about this software and statistics that a person can learn, no matter

how introductory or advanced the user. Besides the R manuals available through the Help icon

at the top of R, there are a number of books written at introductory and advanced levels which

describe how to use R and the similar S-Plus package.



Chapter 1

Thinking statistically

There is no work requiring R in this chapter, but see the example in Section 1.3 below.

1.1 What is statistics?

There is no work requiring R in this section.

1.2 Some statistical stories in real and complex

problems

There is no work requiring R in this section.

1.3 Some examples of what can go wrong at the

beginning of data investigations

There is no work requiring R in this section, but it is timely to show some useful commands

that can help identify problems in the way data are recorded.

The str() command presents the structure of a data set. The head() command prints the

first six rows of the data set. It is quite useful to see the way a data set is arranged before

the user gets too far into creating graphs and numerical summaries of the data, let alone any

analysis.

The default installation of R includes a number of data sets provided for testing purposes

and are directly available to the user. Try:

> head(quakes)

lat long depth mag stations

1 -20.42 181.6 562 4.8 41

2 -20.62 181.0 650 4.2 15

9



10 Chapter 1. Thinking statistically

3 -26.00 184.1 42 5.4 43

4 -17.97 181.7 626 4.1 19

5 -20.42 182.0 649 4.0 11

6 -19.68 184.3 195 4.0 12

> str(quakes)

'data.frame': 1000 obs. of 5 variables:

$ lat : num -20.4 -20.6 -26 -18 -20.4 ...

$ long : num 182 181 184 182 182 ...

$ depth : int 562 650 42 626 649 195 82 194 211 622 ...

$ mag : num 4.8 4.2 5.4 4.1 4 4 4.8 4.4 4.7 4.3 ...

$ stations: int 41 15 43 19 11 12 43 15 35 19 ...

and if you haven’t guessed what the data is for, look at its help page by typing ?quakes at the

command prompt. This will bring up the help page for this data set.

1.4 The discovery of knowledge

There is no work requiring R in this section.



Chapter 2

Gathering and preparing useful data

There are few direct needs for R in this chapter, but showing how R is used to replicate certain

displays needs to be dealt with somewhere.

You need to ensure the MindOnStats package is installed and therefore available for use in

the current session. This gives direct access to the relevant datasets. You can do this by issuing

the library() command:

> library(MindOnStats)

Be careful to use the correct case for the name of the package. This command is not actually

necessary if we are just interested in obtaining data from a package, but it is a good habit to

think about the packages we need in an R session. It is easy to install any additional packages

as they are required; see the appendix for guidance.

2.1 Data sets and types of investigations

The data in Example 2.1 can be obtained using the data() command:

> data(Bike, package = "MindOnStats")

This is a good opportunity to show students why we do not just want to print out the entire

dataset without thinking about it first. This dataset is quite large and has a number of variables.

We should see how R handles the various data types in particular using the str() command:

> str(Bike)

'data.frame': 945 obs. of 5 variables:

$ Time : int 1 1 1 1 1 1 1 1 1 1 ...

$ Type : Factor w/ 4 levels "Bike","Jog","Other",..: 1 4 1 1 1 1 1 2 1 1 ...

$ Speed : int 30 5 36 26 21 28 37 10 27 34 ...

$ Direction: Factor w/ 2 levels "In","Out": 1 2 1 1 1 1 1 1 1 1 ...

$ Gender : Factor w/ 2 levels "Female","Male": 2 1 2 2 2 2 2 1 2 2 .. .

and perhaps the head() command:

11
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> head(Bike)

Time Type Speed Direction Gender

1 1 Bike 30 In Male

2 1 Walk 5 Out Female

3 1 Bike 36 In Male

4 1 Bike 26 In Male

5 1 Bike 21 In Male

6 1 Bike 28 In Male

A shorter summary of the size of the dataset can be obtained using the dim() command:

> dim(Bike)

[1] 945 5

2.2 Some practicalities and challenges in planning data

investigations

No examples in this section require use of R.

2.3 Types of data and variables

Use of the str() command shows the user what data type R thinks is appropriate for each

variable in a dataset. Note how variables that take integer values are given the classifier

int for integer, while purely continuous variables are given the classifier num for numeric.

Categorical variables, and sometimes discrete valued variables, are called factors by R. This

has the advantage of forcing certain styles of presentation to be the default action without

needing to change the command — it’s already been taken care of when the programming was

done.

2.4 Surveys

We see the calculation of the margin of error here. Use of R as a basic calculator is possible

and requires knowledge of the specific commands required. It’s more obvious that the sqrt()

command gives us the square root, but sometimes the reverse is not quite so obvious.

> 1/sqrt(1600)

[1] 0.025

This calculation uses the abbreviation common to many programs (the sqrt() command) for

the square root, but note the division sign and the fact that we do not need to enter an equals

sign to get the answer. Also note the [1] printed to the left of the answer. This shows the user
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that the following item is the first. This feature is more use when the answer is a larger group

of items which are printed on multiple lines in the output.

To replace the Minitab tip given on page 31 for selecting a random sample of ten students

from a class of 270, do the following:

> sample(270, size = 10)

[1] 80 209 145 57 151 63 91 196 139 134

Note that the sample() command has sampling without replacement as its default behaviour so

this argument does not need to be stipulated when we enter this command. Many R commands

have default settings that do not need to be entered to have an effect.

2.5 Designing experiments

No examples in this section require use of R.

2.6 Some types of observational studies

No examples in this section require use of R.

2.7 Some cautions in experiments and observational

studies

No examples in this section require use of R.



Chapter 3

Turning data into graphical

information

Most statistical software has default settings for creating graphics. In an introductory course

where understanding is more important than presentation it is preferable to use time getting

the right information rather than getting the most beautiful and totally perfect graph for

publication. With this in mind, the examples given for this chapter use the default actions

of R, unless these result in misleading the user of the graph; in such circumstances, the bad

graph will be replaced by an alternative that relies on adding greater detail to the code used

to generate the graph. In some circumstances we just add detail to the commands; experiment

by removing arguments from the commands at your own discretion.

3.1 Categorical data

Example 3.1 uses the Bike dataset. Obtain it using:

> data(Bike, package = "MindOnStats")

The summary() command gives some useful information on all variables. We can choose to

get information on only one variable at a time by using the $ notation.

> summary(Bike)

Time Type Speed Direction Gender

Min. : 1.0 Bike :625 Min. : 3.0 In :438 Female:253

1st Qu.:12.0 Jog :110 1st Qu.:10.0 Out:507 Male :692

Median :24.0 Other: 6 Median :23.0

Mean :23.3 Walk :204 Mean :19.7

3rd Qu.:36.0 3rd Qu.:27.0

Max. :40.0 Max. :41.0

> summary(Bike$Type)

Bike Jog Other Walk

625 110 6 204

14
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We should note the different behaviour of the summary() command for the different data types

here. R users benefit from this flexibility as it is built into several commonly used commands

(you’ll see more of this later).

To generate the information in Table 3.1 we will use the following series of commands:

> tapply(Bike$Time, Bike$Type, length)

Bike Jog Other Walk

625 110 6 204

> tapply(Bike$Time, Bike$Type, length)/length(Bike$Type)

Bike Jog Other Walk

0.661376 0.116402 0.006349 0.215873

Note that the tapply() command provides an alternative to the summary() command in this

instance. It needs something to do work on to start with, given as the first argument. The

second argument is for the groups to be identified, which is actually what we are most interested

in in this example. The third argument is the actual function we are applying. The length()

command counts up how many items there are. This command is then used again to convert

the frequencies into relative frequencies in the second step.

The default pie chart and bar chart are given in the first version of Figure 3.1 on page 16 of

this manual. The pie chart does not include the relative frequency information without some

extra juggling of information. See the second version of Figure 3.1 on page 17 of this manual.

Note that without the division of the summary values by the total number of responses, the

bar chart would present the counts rather than the relative frequencies. The enhanced graphs

are given on page 17 of this manual.

To generate Table 3.2 on page 62, we use the tapply() command again, this time using the

list() command to add a two-way classification as the second argument:

> tapply(Bike$Time, list(Bike$Gender, Bike$Type), length)

Bike Jog Other Walk

Female 117 30 2 104

Male 508 80 4 100

> t(tapply(Bike$Time, list(Bike$Gender, Bike$Type), length))

Female Male

Bike 117 508

Jog 30 80

Other 2 4

Walk 104 100

> addmargins(t(tapply(Bike$Time, list(Bike$Gender, Bike$Type),

length)))

Female Male Sum

Bike 117 508 625

Jog 30 80 110

Other 2 4 6

Walk 104 100 204

Sum 253 692 945
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Figure 3.1 (using the simplest code) on page 61 of Utts and Heckard.

> pie(summary(Bike$Type))

> title("Pie chart")
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Jog Other

Walk

Pie chart

> barplot(summary(Bike$Type))

> title("Bar chart", ylab = "Count", xlab = "Type")
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Figure 3.1 (using more advanced code) on page 61 of Utts and Heckard.

> pie(summary(Bike$Type), labels = paste(names(summary(Bike$Type)),

round(100 * summary(Bike$Type)/length(Bike$Type), 1)))

> title("Pie chart")

Bike 66.1

Jog 11.6 Other 0.6

Walk 21.6

Pie chart

> barplot(summary(Bike$Type)/length(Bike$Type))

> title("Bar chart", ylab = "Percentage", xlab = "Type")
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The additional t() command transposes the table to match that given in Table 3.2. We need

the first version when constructing Figure 3.2 which presents the stack bar chart and cluster

bar chart for this data. The addmargins() command adds the row and column totals for the

data given. This is because the default action for the addmargins() command is to provide

these totals; other functions are possible.

Note that the legend() command needs to be issued explicitly so that we can see which

bars represent each gender, and that unfortunately, R has chosen to use grey-scale in place of

colours in the graphs. We can force the colours in graphs when this occurs — examples that

might help follow later in this chapter. Also note the slight differences in the legends produced

in these graphs.

Figure 3.3 is a little more difficult to generate as the barplot() command cannot directly

handle three categorical variables. We trick R into dealing with two of the variables in combi-

nation using the paste() command which joins two text strings together.

Creation of Table 3.3 on page 63 is not a simple reiteration of information already gathered.

We can get the set of counts from work already done, but the correct amount to divide each

count by is not quite so obvious.

> Counts = tapply(Bike$Time, list(Bike$Gender, Bike$Type),

length)

> Counts

Bike Jog Other Walk

Female 117 30 2 104

Male 508 80 4 100

> Divisor = matrix(tapply(Bike$Type, Bike$Type, length), nrow = 2,

ncol = 4, byrow = T)

> Divisor

[,1] [,2] [,3] [,4]

[1,] 625 110 6 204

[2,] 625 110 6 204

> round(t(100 * Counts/Divisor), 1)

Female Male

Bike 18.7 81.3

Jog 27.3 72.7

Other 33.3 66.7

Walk 51.0 49.0

As before, R has not recognised that we probably want to put the ‘Other’ category last. It has

processed the different types of transport in alphabetical order. We have also used the round()

command here because we do not want an excessive number of decimal places being printed.

We have also chosen not to undertake the presentation of the row totals for two reasons: First,

they are somewhat obvious, and second, the R code needed to generate them and present them

is well beyond any benefit gained.
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Figure 3.2 on page 62 of Utts and Heckard.

> barplot(tapply(Bike$Time, list(Bike$Gender, Bike$Type), length),

legend = TRUE)

> title("Stack bar chart of type, gender", ylab = "Count",

xlab = "Type")
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> barplot(tapply(Bike$Time, list(Bike$Gender, Bike$Type), length),

legend = TRUE, beside = TRUE)

> title("Cluster bar chart of type, gender", ylab = "Count",

xlab = "Type")
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Figure 3.3 on page 62 of Utts and Heckard.

> barplot(tapply(Bike$Time, list(paste(Bike$Gender, Bike$Direction),

Bike$Type), length), legend = TRUE, beside = TRUE)

> title("Chart of type, direction, gender", ylab = "Count",

xlab = "Type")
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In this first edition of this manual we have not reproduced the tables and figures that use

the PennState1 dataset which accompanied the United States edition of Mind on Statistics.

The dataset is available as part of the MindOnStats package however, and could be obtained

using:

> data(PennState1, package = "MindOnStats")

> str(PennState1)

'data.frame': 190 obs. of 9 variables:

$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 1 1 1 1 1 2 2 ...

$ HrsSleep: num 5 7 6 7.5 7 3 5 9 4 9 ...

$ SQpick : Factor w/ 2 levels "Q","S": 2 2 2 2 2 2 2 2 2 2 ...

$ Height : num 67 75 73 64 63 65 64 68 73 69 ...

$ RandNumb: int 3 9 7 8 7 2 7 8 10 8 ...

$ Fastest : int 110 109 90 80 75 83 80 100 140 105 ...

$ RtSpan : num 21.5 22.5 23.5 20 19 ...

$ LftSpan : num 21.5 22.5 24 21 19 ...

$ Form : Factor w/ 2 levels "QorS","SorQ": 2 2 2 2 2 2 2 2 2 2 ...

3.2 Graphs and plots for one continuous variable

To create the graphs in this section we use the HoldingBreath dataset from the MindOnStats

package.

> data(HoldingBreath, package = "MindOnStats")

> str(HoldingBreath)

'data.frame': 102 obs. of 14 variables:

$ Gender : Factor w/ 2 levels "f","m": 2 2 2 2 2 1 2 1 1 2 ...

$ Age : int 32 59 62 42 34 21 22 29 61 18 ...

$ Size : Factor w/ 4 levels "l","m","s","xl": 2 1 1 2 2 2 1 2 2 1 ...

$ Smoker : Factor w/ 2 levels "n","y": 2 1 2 2 1 2 1 2 1 2 ...

$ Asthmatic: Factor w/ 2 levels "n","y": 1 1 1 1 1 2 1 2 1 1 ...

$ Illness : Factor w/ 2 levels "n","y": 1 1 1 1 1 2 1 1 2 1 ...

$ Exercise : Factor w/ 2 levels "n","y": 1 1 1 2 2 2 2 1 1 2 ...

$ Time : num 67.7 42.3 48.9 55.9 74.4 ...

$ C9.T : logi NA NA NA NA NA NA ...

$ C10.T : logi NA NA NA NA NA NA ...

$ C11.T : logi NA NA NA NA NA NA ...

$ C12.T : logi NA NA NA NA NA NA ...

$ C13.T : logi NA NA NA NA NA NA ...

$ C14.T : logi NA NA NA NA NA NA ...

The way R generates a dot plot is different to other software. We present three different

options in Figure 3.9 because we cannot reproduce the graph given in the text exactly without

additional commands and a simple graph deserves to be created using the simplest code possible!
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Figure 3.9 on page 70 of Utts and Heckard.

> windows(7, 2.5)

> dotchart(HoldingBreath$Time, pch = 20, xlab = "Time (seconds)",

lcolor = 0)

20 40 60 80 100

Time (seconds)

> windows(7, 2.5)

> stripchart(HoldingBreath$Time, method = "jitter", pch = 20,

xlab = "Time (seconds)")

20 40 60 80 100

Time (seconds)

> windows(7, 2.5)

> stripchart(round(HoldingBreath$Time, 0), method = "stack",

pch = 20, xlab = "Time (seconds)")
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Time (seconds)
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The windows() command opens a new graphics window. It is done automatically whenever

we generate a graph and a window is not already waiting for our graph. When R does this,

it chooses a default size, and more importantly a default aspect ratio for the incoming graph.

The default really does not work well for the options for the dot plot shown here, or the boxplot

graphs we see later in this section.

Figures 3.10 to 3.12 show the use of the hist(), stem(), and boxplot() commands.

Figure 3.10 on page 70 of Utts and Heckard.

> hist(HoldingBreath$Time, xlab = "Time (seconds)")
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The histogram created by R automatically generates a main title. Change this using the

title() command, or the main argument inside the hist() command itself. Note that the

stem() command creates a textual display rather than a graph in a separate window. This is

of course how all graphs were made at one time. The R version of the stem-and-leaf plot does

not give the cumulative counts of data from top and bottom as does other software. R has also

rounded the data to integers before creating the graph, and further, R has used two lines when

other software uses one for each category. The differences are quite interesting to note.

We have chosen to present the single boxplot as a horizontal graphic as it is slightly more

attractive when only one boxplot is given.
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Figure 3.11 on page 70 of Utts and Heckard.

> stem(HoldingBreath$Time)

The decimal point is 1 digit(s) to the right of the |

1 | 6789999

2 | 02244

2 | 677889

3 | 11123444

3 | 56778899

4 | 011122222344444

4 | 56888999

5 | 0000111233444

5 | 56888

6 | 12344

6 | 5677889

7 | 01244

7 |

8 | 144

8 | 58

9 | 01

9 | 5

10 |

10 | 8

11 | 0

Figure 3.12 on page 71 of Utts and Heckard.

> windows(7, 5)

> boxplot(HoldingBreath$Time, horizontal = TRUE, xlab = "Time (seconds)",

main = "Holding breath time")
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3.3 Continuous and categorical data

To generate Figure 3.16, we return to the Bike dataset. The interaction.plot() function

uses the mean as its default action to take on the data for each combination of what are called

the x.factor and trace.factor. We can change the function applied if we need to at a later

date.

Figure 3.16 on page 74 of Utts and Heckard.

> interaction.plot(x.factor = Bike$Type, trace.factor = Bike$Gender,

response = Bike$Speed, ylab = "Mean of Speed", xlab = "Type",

trace.label = "Gender", main = "Interaction plot for Speed")
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The legend is currently printing slightly outside the box for our graph. This can be fixed by

adding the inset=0.25, but this generates a set of warning messages that might distress some

novice users. It does, however, make the graph much tidier!

3.4 More than one continuous variable

By now you are probably tiring of typing the name of the dataset over and over again, so it’s

time to introduce the attach() command which attaches the dataset named so that we can

directly access the variables within it. This is done in the next example.

In this section we make use of the plot() command which is a common command because

it performs different actions for different objects. This is both confusing for some users and a
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joy for others working with R. It is used to create a scatterplot in Figure 3.17.

Figure 3.17 on page 75 of Utts and Heckard.

> attach(HoldingBreath)

> plot(x = Age, y = Time, xlab = "Age (years)", ylab = "Time (seconds)",

main = "Holding Breath, Time vs Age")

> detach(HoldingBreath)
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See that we’ve also used the detach() command in these figures. This undoes the attach()

command. If you intend working with a single dataset for some time then you wouldn’t really

want to keep attaching and detaching it. The re-use of these commands is given here for

completeness only, and because we swap datasets often enough that we might end up having

two variables from different datasets having the same name; this does cause some conflicts

between datasets. An alternative is to use the data argument within the plot() command, as

done in the next example.

We now use another dataset, obtained via:

> data(Textbooks, package = "MindOnStats")

> str(Textbooks)

'data.frame': 394 obs. of 8 variables:

$ Discipline: Factor w/ 14 levels "Accountancy",..: 8 8 8 8 8 8 8 8 8 8 ...

$ Price : num 48 11.5 100 78 19.9 ...

$ Coverstyle: Factor w/ 2 levels "H","S": 2 2 2 1 2 2 2 2 2 2 ...

$ Colour : Factor w/ 2 levels "N","Y": 1 1 1 1 1 1 1 1 1 1 ...

$ CD : Factor w/ 2 levels "N","Y": 1 1 1 1 1 1 1 1 1 1 ...
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$ Thickness : num 11.6 5.98 32.58 28.48 11.15 ...

$ Weight : int 330 135 870 1085 220 645 195 1530 725 1130 ...

$ Year : int 2005 2003 2001 2006 2005 2007 2005 2005 2005 2007 .. .

The plot() command is so flexible that it offers a number of different ways of getting the

same outcome. In Figure 3.18, we use the formula approach to define the two variables to be

plotted. This use of Price∼Thickness uses the tilde and is common to many R commands.

We also use the data argument here for illustration.

Figure 3.18 on page 76 of Utts and Heckard.

> plot(Price ~ Thickness, data = Textbooks, xlab = "Thickness (mm)",

ylab = "Price (A$)", main = "Textbook Price vs Thickness")
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This figure is created using a set of commands. First we create the axes for the graph using

the plot() command without actually plotting any data, using the type argument. Then we

use the points() command to add points to the graph for the male respondents by selecting the

two variables for only the male subjects using the subscript notation; the points for the female

respondents are added in similar fashion. Note the use of both the type of symbol plotted and

the colour used in this graph. This was done for the benefit of both black-and-white print users

and those readers viewing the electronic copy which benefits from the use of colour. Finally, we

add a legend() command for obvious reasons which uses the same information as was given

to the points() commands it follows. Finally, see we reverted to the use of attach() and

detach() commands which was a more efficient way of putting this code together.
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Figure 3.20 on page 77 of Utts and Heckard.

> attach(HoldingBreath)

> plot(x = Age, y = Time, xlab = "Age (years)", ylab = "Time (seconds)",

main = "Holding Breath, Time vs Age", type = "n")

> points(x = Age[Gender == "m"], y = Time[Gender == "m"], pch = 21,

col = 4)

> points(x = Age[Gender == "f"], y = Time[Gender == "f"], pch = 19,

col = 2)

> legend("topright", title = "Gender", legend = c("Male", "Female"),

pch = c(21, 19), col = c(4, 2))

> detach(HoldingBreath)
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Figure 3.21 has a similar structure to Figure 3.20 but we have used more complete code

for such items as the colours used. It’s personal preference as to the use of words vs numbers,

but you need to note the use of quote marks around the text information provided to some

commands.

Figure 3.21 on page 78 of Utts and Heckard.

> attach(Textbooks)

> plot(Price ~ Thickness, xlab = "Thickness (mm)", ylab = "Price (A$)",

main = "Textbooks, Price vs Thickness", type = "n")

> points(Price[Coverstyle == "H"] ~ Thickness[Coverstyle ==

"H"], pch = 22, col = "blue")

> points(Price[Coverstyle == "S"] ~ Thickness[Coverstyle ==

"S"], pch = 19, col = "green")

> legend("bottomright", title = "Cover", legend = c("Hard",

"Soft"), pch = c(22, 19), col = c("blue", "green"))

> detach(Textbooks)
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None of the datasets provided with the textbook lend themselves to being plotted as a time

series plot. We have found a dataset that is provided with the default installation of R to

illustrate this type of plot. Note that we have used the plot() command again, and have

specified only a single variable to be plotted in the first of the three commands needed.

Notice that we have forced R to show the range of values spanned by the y-axis using the

ylim argument to the plot() command. We have then added the data for two more series

using the lines() command which does the same job as the points() command used earlier
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Extra Figure 1 is not a replication of work given in Utts and Heckard.

> plot(ldeaths, ylim = c(0, 4000), xlab = "Year", ylab = "Number of deaths",

main = "Deaths from lung diseases in the United Kingdom")

> lines(fdeaths, col = "red")

> lines(mdeaths, col = "blue")

> legend("topright", legend = c("Total", "Men", "Women"), col = c("black",

"blue", "red"), lty = c(1, 1, 1))
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except for the change from points to a series of line segments.

3.5 Outliers

There are no graphs, tables, or calculations requiring R in this section.

3.6 Good graphs and bad graphs

There are no graphs, tables, or calculations requiring R in this section.
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Data features and summary statistics

4.1 Commenting on features of data

We use the Bike data again to extend some graph techniques shown in the previous chapter.

> data(Bike, package = "MindOnStats")

The first task is to extract only those users of the bikeway that are actually using a bike. We

create a second dataset called Bike2, based on the first:

> Bike2 = Bike[Bike$Type == "Bike", ]

> str(Bike2)

'data.frame': 625 obs. of 5 variables:

$ Time : int 1 1 1 1 1 1 1 1 1 1 ...

$ Type : Factor w/ 4 levels "Bike","Jog","Other",..: 1 1 1 1 1 1 1 1 1 1 ...

$ Speed : int 30 36 26 21 28 37 27 34 21 29 ...

$ Direction: Factor w/ 2 levels "In","Out": 1 1 1 1 1 1 1 1 1 1 ...

$ Gender : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 .. .

We have presented the two options for using the stripchart() command in Figure 4.1.

Use of the windows() command can have an impact on the presentation of these dot plots. We

leave it to the user to alter the height of the graph window to suit their personal preferences.

We need the Mobiles dataset for creating Figure 4.3. It is the first time we have used this

dataset so we import it from the MindOnStats package and take a quick look at its structure

using:

> data(Mobiles, package = "MindOnStats")

> str(Mobiles)

'data.frame': 179 obs. of 10 variables:

$ Gender : Factor w/ 2 levels "Female","Male": 1 2 1 2 1 2 2 2 2 2 .. .

$ Age : int 17 21 20 23 38 19 23 24 19 19 ...

$ Faculty : Factor w/ 10 levels "Arts","Built Env",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Brand : Factor w/ 15 levels "","Alcatel","Ericsson",..: 4 6 12 1 8 3 3 3 6 6 ...

31
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Figure 4.1 on page 94 of Utts and Heckard.

> windows(7, 4)

> stripchart(Speed ~ Gender, data = Bike2, method = "jitter",

pch = 20, xlab = "Speed (km/h)")
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Figure 4.2 on page 94 of Utts and Heckard.
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$ Colour : Factor w/ 13 levels "","Black","Blue",..: 12 12 12 1 3 3 2 12 3 7 ...

$ Provider : Factor w/ 7 levels "","3","Optus",..: 5 4 3 1 3 7 5 3 7 5 ...

$ PlanType : Factor w/ 3 levels "","Plan","Prepaid": 2 3 3 1 2 3 2 2 3 2 ...

$ Bill : int 70 200 30 NA 120 10 100 30 20 43 ...

$ PrimaryUse: Factor w/ 4 levels "","Both","Calls",..: 4 3 2 1 3 2 2 3 4 3 ...

$ No.Phones : int 1 3 1 2 3 1 1 9 1 4 ...

Figure 4.3 on page 95 of Utts and Heckard.
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We have needed to use the graphical parameter cex.axis when we produced this graph.

This expands the size of the text on the axis markers of the graph, and may not be necessary



34 Chapter 4. Data features and summary statistics

on your configuration of R. Experiment and see if it is necessary.

4.2 Measures of location

The Fish dataset is used in this section. Obtain it using:

> data(Fish, package = "MindOnStats")

> str(Fish)

'data.frame': 58 obs. of 4 variables:

$ FishType: Factor w/ 9 levels "bream ",..: 1 1 1 1 1 1 3 3 3 3 ...

$ Length : int 170 250 360 410 245 230 200 270 240 250 ...

$ Weight : int 250 395 720 890 390 380 310 465 370 380 ...

$ Angler : int 1 1 1 2 2 1 2 2 1 2 ...

Note the use of a capital letter at the start of the variable names. It is important that a

variable name is not confused with R commands. Most R commands are lower case and we

have converted all variable names in the supplied datasets to start with capitals to avoid any

clashes. The Length variable is therefore not going to be confused with the length() command.

We use the sort() command to put the lengths of the fish in ascending order.

> SortedLengths = sort(Fish$Length)

> SortedLengths

[1] 85 92 110 170 170 180 185 185 185 200 230 230 230 235

[15] 240 240 240 240 240 245 245 250 250 250 250 250 250 250

[29] 250 260 270 270 270 270 270 270 280 280 280 280 285 290

[43] 290 305 310 315 320 330 340 345 350 360 370 385 390 400

[57] 410 1200

Then we use the mean() and median() commands to get two measures of location:

> mean(Fish$Length)

[1] 278.8

> median(Fish$Length)

[1] 255

Note the summary() command also extracts these measures of location, but it gives us other

measures that might not be needed at this time.

4.3 Measures of spread

The reef shark is dropped because it is a much longer fish than the others in the dataset.

> length(SortedLengths)

[1] 58

> FishLengthsNoShark = SortedLengths[-58]
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Note the subscripting has used the subtraction operator to subtract the 58th observation from

the set of sorted lengths.

Now, using the FishLengthsNoShark variable we have created, we can find the various

measures of spread using the range(), sd() (standard deviation), IQR() (interquartile range),

and var() (variance) commands.

> range(FishLengthsNoShark)

[1] 85 410

> sd(FishLengthsNoShark)

[1] 69.4

> IQR(FishLengthsNoShark)

[1] 50

> var(FishLengthsNoShark)

[1] 4816

There are several ways to generate the quartiles for this data. The summary() command applied

to a variable will generate them, the fivenum() command will, and we can also get them using

the quantile() command. The differences are briefly explained in the help for quantile()

command, where we learn that there are at least nine different versions. We present the three

approaches, but others exist:

> fivenum(FishLengthsNoShark)

[1] 85 240 250 290 410

> summary(FishLengthsNoShark)

Min. 1st Qu. Median Mean 3rd Qu. Max.

85 240 250 263 290 410

> quantile(FishLengthsNoShark, probs = c(0.25, 0.75))

25% 75%

240 290

4.4 Shape

To take the natural logarithm of a set of numbers, we apply the log() command.

> lnBills = log(Mobiles$Bill)

To replace the EXCEL tip on page 102, we show the use of the min(), max(), and quan-

tile() commands applied to the FishLengthsNoShark data. To calculate the 90th percentile:

> quantile(FishLengthsNoShark, probs = 0.9)

90%

354
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and the minimum and maximum values:

> min(FishLengthsNoShark)

[1] 85

> max(FishLengthsNoShark)

[1] 410

The other functions explained in this tip have been introduced already, namely: length() for

counts and others given in this chapter.

4.5 Parameters, models and estimates

There are no examples in this section requiring use of R.
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Investigating categorical variables and

their relationships

5.1 Summarising and presenting categorical data

We use the PopSong dataset for a number of examples in this chapter. Obtain it using:

> data(PopSong, package = "MindOnStats")

> str(PopSong)

'data.frame': 763 obs. of 8 variables:

$ Year : int 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 .. .

$ Position : int 1 2 3 4 5 6 7 8 9 10 ...

$ Chart : Factor w/ 2 levels "ARIA","JJJ": 1 1 1 1 1 1 1 1 1 1 ...

$ Length : int 272 248 289 295 276 180 199 154 213 260 ...

$ Genre : Factor w/ 8 levels "AltRock","Dance",..: 2 3 8 8 6 1 6 8 6 6 ...

$ Country : Factor w/ 4 levels "Australia","Other",..: 2 4 4 4 3 1 4 4 2 2 ...

$ Publisher: Factor w/ 9 levels "BMG","EMI","Festival",.. : 6 8 6 6 7 2 5 8 7 7 ...

$ Author : Factor w/ 3 levels "Band","Cover",..: 3 1 1 1 3 1 3 1 3 3 ...

To re-create the information presented in Table 5.1 and Figure 5.1, we use slightly more

concise code than was used in previous chapters. First we need to extract only the data for

2001:

> PopSong01 = PopSong[PopSong$Year == 2001, ]

> str(PopSong01)

'data.frame': 195 obs. of 8 variables:

$ Year : int 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 .. .

$ Position : int 1 2 3 4 5 6 7 8 9 10 ...

$ Chart : Factor w/ 2 levels "ARIA","JJJ": 1 1 1 1 1 1 1 1 1 1 ...

$ Length : int 217 231 230 235 215 404 243 209 190 199 ...

$ Genre : Factor w/ 8 levels "AltRock","Dance",..: 6 7 2 7 8 7 6 8 2 6 ...

$ Country : Factor w/ 4 levels "Australia","Other",..: 4 4 1 4 4 4 4 4 3 3 ...

$ Publisher: Factor w/ 9 levels "BMG","EMI","Festival",.. : 6 7 3 7 7 7 7 7 7 2 ...

$ Author : Factor w/ 3 levels "Band","Cover",..: 1 1 3 3 1 1 1 2 3 3 ...
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Then using the tapply() command to find the contents of the various elements of the table,

and the plot() command to generate the bar chart in Figure 5.1:

> attach(PopSong01)

> tapply(Genre, Genre, length)

AltRock Dance Elec HdRock Indie Pop RnB Rock

24 12 20 6 37 24 47 25

> length(Genre)

[1] 195

> tapply(Genre, Genre, length)/length(Genre)

AltRock Dance Elec HdRock Indie Pop RnB Rock

0.12308 0.06154 0.10256 0.03077 0.18974 0.12308 0.24103 0. 12821

Figure 5.1 on page 118 of Utts and Heckard.

> plot(Genre, xlab = "Genre", ylab = "Count", main = "Counts of Songs by Genre for 2001")
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> detach(PopSong01)

Note the convenience of accessing the variable names directly having used the attach() and

detach() commands here.

5.2 More than two categorical variables

The aggregate() command is a good way to obtain a table of results where there are combi-

nations of more than two categorical variables that classify responses. The following example

is not given in Utts and Heckard but is given here to illustrate the aggregate() command.
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> aggregate(Position ~ Chart + Country + Author, data = PopSong,

FUN = length)

Chart Country Author Position

1 ARIA Australia Band 39

2 JJJ Australia Band 163

3 ARIA Other Band 31

4 JJJ Other Band 20

5 ARIA UK Band 23

6 JJJ UK Band 52

7 ARIA USA Band 108

8 JJJ USA Band 122

9 ARIA Australia Cover 1

10 JJJ Australia Cover 4

11 ARIA Other Cover 1

12 JJJ Other Cover 1

13 ARIA UK Cover 9

14 ARIA USA Cover 18

15 JJJ USA Cover 5

16 ARIA Australia Songwr 19

17 ARIA Other Songwr 40

18 ARIA UK Songwr 44

19 ARIA USA Songwr 63

The FUN argument tells the aggregate() command to apply the length() command to each

combination of the factors described on the right-hand-side of the formula given. The range

of functions that can be supplied is pretty much the same as for the tapply() command seen

already.

5.3 One categorical variable: testing a set of

proportions

The χ2-distribution is used in this section. To find a probability for a particular value from this

distribution, we use the pchisq() command. To replicate the result shown in the Minitab tip

on page 127 use:

> pchisq(5.935, df = 2, lower.tail = FALSE)

[1] 0.05143

The Minitab tip on page 129 showing how to perform a goodness of fit test, can be replicated

using the chisq.test() command:

> chisq.test(x = c(42, 49, 69), p = c(0.22, 0.4, 0.38))

Chi-squared test for given probabilities

data: c(42, 49, 69)

X-squared = 5.935, df = 2, p-value = 0.05143
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5.4 p-values and testing statistical hypotheses

There are no examples in this section requiring R.

5.5 Testing independence of two categorical variables

We need to see the contingency table for the Genre and Chart variables in the PopSong dataset.

The tapply() command does this for us:

> attach(PopSong)

> tapply(Position, list(Genre, Chart), length)

ARIA JJJ

AltRock 5 89

Dance 78 2

Elec 15 44

HdRock 9 26

Indie 7 151

Pop 141 3

RnB 87 14

Rock 54 38

> detach(PopSong)

Then to combine the two categories and re-create the table we use:

> attach(PopSong)

> NewGenre = Genre

> levels(NewGenre)

[1] "AltRock" "Dance" "Elec" "HdRock" "Indie" "Pop" "RnB"

[8] "Rock"

> levels(NewGenre)[1] = "AnHRock"

> levels(NewGenre)[4] = "AnHRock"

> levels(NewGenre)

[1] "AnHRock" "Dance" "Elec" "Indie" "Pop" "RnB" "Rock"

> tapply(Position, list(NewGenre, Chart), length)

ARIA JJJ

AnHRock 14 115

Dance 78 2

Elec 15 44

Indie 7 151

Pop 141 3

RnB 87 14

Rock 54 38

> detach(PopSong)
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We will use the chisq.test() command to test the notion that a pair of categorical variables

are independent of one another. We test the independence of the NewGenre variable just created,

and the Chart variable from the original dataset using:

> chisq.test(NewGenre, PopSong$Chart)

Pearson's Chi-squared test

data: NewGenre and PopSong$Chart

X-squared = 484.2, df = 6, p-value < 2.2e-16

Case Study 5.1 uses Table 5.20 which appears on page 135. We enter it using the c() and

matrix() commands. For completeness, we also add in the row and column names using the

dimnames() command.

> BreastCancer = matrix(c(166, 8340, 124, 7978), nrow = 2,

byrow = TRUE)

> dimnames(BreastCancer)[[1]] = c("Hormones", "Placebo")

> dimnames(BreastCancer)[[2]] = c("Yes", "No")

> BreastCancer

Yes No

Hormones 166 8340

Placebo 124 7978

We then perform a test for the independence of the two factors (row and column) using the

chisq.test():

> chisq.test(BreastCancer)

Pearson's Chi-squared test with Yates' continuity correct ion

data: BreastCancer

X-squared = 4.046, df = 1, p-value = 0.04426

5.6 Risk, relative risk and misleading statistics about

risk

No additional R commands need to be introduced in this section.
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Probability essentials for data analysis

There are few tasks in this chapter that are beyond simple mathematical operations. R could

of course be used as a basic calculator in these instances.

6.1 What is probability?

We do not present any examples from this section using R.

6.2 Where do values of probabilities come from?

We do not present any examples from this section using R.

6.3 What is a random variable?

We do not present any examples from this section using R.

6.4 Expected values and standard deviations of random

variables

We do not present any examples from this section using R.

6.5 Three special distributions

The cumsum() command takes a set of numbers (called a vector by R) and returns the cumulative

sum of all objects from the first up to each point. For example:

> x = 1:5

> x

42
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[1] 1 2 3 4 5

> cumsum(x)

[1] 1 3 6 10 15

This functionality is embedded in some commands that we introduce in this section.

Example 6.17 on page 174 seeks a probability using the binomial distribution. We find these

using the dbinom() command, where the d stands for density.

> dbinom(7, size = 10, prob = 0.487)

[1] 0.1053

The arguments for the dbinom() command, and the related commands for other binomial

distribution actions, use size and prob as the way of providing the two parameters of the

binomial distribution.

To accumulate a set of binomial probabilities it is probably easiest to use the dbinom()

command and add up the results using the sum() command. For example, in Example 6.18

where we want the sum of the probabilities of getting 10 or more out of 15 attempts, we could:

> x = 10:15

> dbinom(x, size = 15, prob = 0.5)

[1] 9.164e-02 4.166e-02 1.389e-02 3.204e-03 4.578e-04 3.0 52e-05

> sum(dbinom(x, size = 15, prob = 0.5))

[1] 0.1509

or use the pbinom() command which does the accumulation for us:

> pbinom(9, size = 15, prob = 0.5, lower.tail = FALSE)

[1] 0.1509

but when we do use the pbinom() command we need to remember that the function gives us

the cumulative distribution value up to the point specified, or its complement if the lower.tail

argument is set to FALSE.

Turning to the normal distribution, we use the pnorm() command to obtain probabilities.

This evaluates the cumulative distribution function at a specified point. We rework the elements

of Example 6.20 on page 180 using:

> pnorm(25, mean = 26.42, sd = 4.3)

[1] 0.3706

for a situation where we want the probability of being less than 25km/h. Then we add the

lower.tail=FALSE argument to get the probability of being greater than 30km/h:

> pnorm(30, mean = 26.42, sd = 4.3, lower.tail = FALSE)

[1] 0.2025
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and finally, we need to get the two probabilities required to find the probability of being within

the range 25 to 30 km/h:

> pnorm(c(25, 30), mean = 26.42, sd = 4.3)

[1] 0.3706 0.7975

> diff(pnorm(c(25, 30), mean = 26.42, sd = 4.3))

[1] 0.4268

The diff() command gives us a convenient shortcut to subtract the first result from the second.

6.6 Normal probability plots

We use the qqnorm() command to generate the points plotted on a normal probability plot,

then we add a straight line to the plot to help us determine the normality of the data using the

qqline() command.

Figure 6.12 presents the normal probability plot for the speeds of the male cyclists in the

Bike dataset.

> data(Bike, package = "MindOnStats")

> MaleCyclists = Bike$Speed[Bike$Gender == "Male" & Bike$Type ==

"Bike"]

See how we have incorporated two conditions for the observations of Speed to be included in

the data to be analysed here. R does not present the intervals given by Minitab.

The TimePerception dataset is used for the first time in this section. See Figure 6.13 for

a normal probability plot on one of its variables, and Figure 6.14 for another. In both cases,

histograms are also presented. The data are obtained using:

> data(TimePerception, package = "MindOnStats")

> str(TimePerception)

'data.frame': 120 obs. of 4 variables:

$ FiveSec : num 3.62 5.05 4.24 4.35 4.01 ...

$ TenSec : num 6.73 9.51 5.68 7.34 8.2 ...

$ Gender : Factor w/ 2 levels "female","male ": 1 1 1 1 1 1 1 1 1 1 .. .

$ AgeGroup: Factor w/ 6 levels "10-20","21-30",..: 1 1 1 1 1 1 1 1 1 1 ...

This dataset is used again in Chapter 9 on regression.
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Figure 6.12 on page 184 of Utts and Heckard.

> qqnorm(MaleCyclists)

> qqline(MaleCyclists)
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Figure 6.13 on page 184 of Utts and Heckard.

> attach(TimePerception)

> hist(FiveSec)

> qqnorm(FiveSec)

> qqline(FiveSec)

> detach(TimePerception)

Histogram of FiveSec

FiveSec

F
re

qu
en

cy

2 3 4 5 6 7

0
5

10
15

20
25

−2 −1 0 1 2

2
3

4
5

6
7

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s



46 Chapter 6. Probability essentials for data analysis

Figure 6.14 on page 185 of Utts and Heckard.

> attach(TimePerception)

> hist(TenSec)

> qqnorm(TenSec)

> qqline(TenSec)

> detach(TimePerception)
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Chapter 7

Estimating proportions with confidence

7.1 Percentages and proportions abound

We do not present any examples from this section using R.

7.2 Confidence intervals for proportions

The prop.test() command provides a confidence interval for a single proportion. The problem

is that it is not the same calculation as the options given by Utts and Heckard’s TAM or AAM

approaches. The JEM approach is obtainable using the binom.test() command, for example:

> binom.test(9, 235)

Exact binomial test

data: 9 and 235

number of successes = 9, number of trials = 235, p-value < 2.2e -16

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.01766 0.07145

sample estimates:

probability of success

0.0383

but we are given more infomation that we want at this time — very unusual for R! To calculate

the TAM and AAM based confidence intervals for the same scenario, we suggest using basic

calculations.

> p = 9/235

> s = sqrt(p * (1 - p)/235)

> z = c(-1.96, 1.96)

> p + z * s

47
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[1] 0.01376 0.06284

where we have chosen the z-values for the 95% confidence interval ourselves. For the AAM

approach:

> p = 11/239

> s = sqrt(p * (1 - p)/239)

> p + z * s

[1] 0.01946 0.07259

Just to illustrate the fact that the prop.test() command output is different:

> prop.test(9, 235)

1-sample proportions test with continuity correction

data: 9 out of 235, null probability 0.5

X-squared = 198.5, df = 1, p-value < 2.2e-16

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.01880 0.07387

sample estimates:

p

0.0383

7.3 Background for confidence intervals for proportions

Most of the tasks required in this section have been covered elsewhere so we only show the

additional commands that might be useful.

To generate a set of random numbers that follow a binomial distribution we use the rbinom()

command.

> x = rbinom(n = 1000, size = 100, prob = 0.6)

This generates a vector of length 1000 from a binomial distribution with n = 100, and p = 0.6.

7.4 Confidence intervals for the difference in two

proportions

The prop.test() command can be used to provide a confidence interval for the difference in

two proportions. The choice not to use Yates’ correction gives results as close to those presented

in Utts and Heckard as possible.

> prop.test(x = c(210, 213), n = c(432, 513), correct = FALSE)
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2-sample test for equality of proportions without continui ty

correction

data: c(210, 213) out of c(432, 513)

X-squared = 4.769, df = 1, p-value = 0.02898

alternative hypothesis: two.sided

95 percent confidence interval:

0.007349 0.134464

sample estimates:

prop 1 prop 2

0.4861 0.4152

The one reassuring fact from using this command is that it gives the same results as those given

by Minitab on page 216.

7.5 Confidence intervals and decisions

No extra work in this section requires further use of R.

7.6 Sample size to estimate a proportion

We do not present any examples from this section using R as there are only a few basic calcu-

lations. The power.prop.test() command might be worth investigating after consideration

of power. See Section 11.13 for more detail.
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Analysis of variance: investigating

effects of categorical variables on a

continuous variable

8.1 Some examples of data investigations that include

continuous responses and possible categorical

explanatory variables

No examples in this section require use of R.

8.2 One-way ANOVA

We obtain the GoGoGo dataset by issuing the data() command as before:

> data(GoGoGo, package = "MindOnStats")

> str(GoGoGo)

'data.frame': 100 obs. of 7 variables:

$ Lights : Factor w/ 2 levels "amber","green": 2 2 2 2 2 2 2 2 2 2 .. .

$ AgeGroup: Factor w/ 3 levels "<30",">40","30-40": 2 3 3 3 3 3 3 1 1 3 ...

$ Gender : Factor w/ 2 levels "F","M": 2 2 1 2 2 1 2 2 2 2 ...

$ Colour : Factor w/ 9 levels "BLACK","BLUE",..: 7 2 5 6 9 7 4 8 6 9 ...

$ Type : Factor w/ 8 levels "4WD","BUS","LARGE",..: 3 3 3 4 6 3 3 6 8 8 ...

$ Make : Factor w/ 18 levels "BMW","DAEWOO",..: 6 4 17 16 6 12 13 6 4 4 ...

$ Time : num 5.17 3.52 4.1 3.9 4.19 3.75 4.8 4.64 4.65 3.65 ...

The aov() command is used for many analysis of variance models. It provides the simplest

results via the associated summary() command.

50
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To replicate Example 8.6, we need to extract the data for only those observations that involve

a green light. The aov() command has two useful arguments that we will take advantage of

throughout this chapter.

> GreenLights.aov = aov(Time ~ AgeGroup, data = GoGoGo, subset = Lights ==

"green")

> summary(GreenLights.aov)

Df Sum Sq Mean Sq F value Pr(>F)

AgeGroup 2 5.16 2.580 4.94 0.011 *
Residuals 47 24.52 0.522

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

The data argument in this aov() command gives us direct access to the names of variables in

the formula statement and the subset argument. The subset command gives us the chance

to extract only those rows of the dataset that conform to a particular constraint. Note on this

occasion that we want only the drivers heading for a green light and that a double equals sign is

required. Use of == distinguishes this relationship from the use of the single equals sign which

assigns a value to an argument within a command.

For the Example 8.7 we use the Textbooks dataset. Obtain it using:

> data(Textbooks, package = "MindOnStats")

Notice how the following command combines the two commands introduced in the last

example into a single line of code. This isn’t necessary and some R users would prefer the

previous approach. Also note the use of the <- which is for an assignment. The right-hand-side

of this relationship is assigned to the object named on the left.

> summary(Price.aov1 <- aov(Price ~ Discipline, data = Textbooks))

Df Sum Sq Mean Sq F value Pr(>F)

Discipline 13 101139 7780 10.2 <2e-16 ***
Residuals 380 288565 759

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

In many texts using R, this assignment and its less often used but equally useful -> assignment

are used in all situations where the outcome of a command is to be stored as an object for

further manipulation. The purists may frown on the use of the single = character being used to

assign something to an object but it’s quick, it works and it’s understood by the novice.

Utts and Heckard present an interval plot on page 235 of this section. R does not have a

command to call on that creates a graph like that given by Minitab.

Example 8.9 uses the PaperPlanes dataset. Obtain it using:

> data(PaperPlanes, package = "MindOnStats")

> dim(PaperPlanes)
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[1] 144 10

> head(PaperPlanes)

PlaneNum Design FlightNum Paper Thrower FlightTime Displa cement

1 1 generic 1 rice Sarah 0.980 3.13

2 1 generic 2 rice Rachelle 2.132 4.96

3 1 generic 3 rice Alicia 1.421 3.86

4 1 generic 4 rice Jake 1.467 6.72

5 2 generic 1 plain Alicia 1.698 4.93

6 2 generic 2 plain Sarah 1.024 6.28

LandPosition Landing Interference

1 down nosedive no

2 down nosedive no

3 down glide no

4 down glide no

5 down nosedive no

6 down glide no

We need only the data for the ‘stingray glider’ design of paper planes for this example. Some-

times it proves easier to create a new dataset rather than use the subset argument because

this argument is not available in all commands we might want to apply.

> StingRay = PaperPlanes[PaperPlanes$Design == "stingray glider",

]

> dim(StingRay)

[1] 48 10

> head(StingRay)

PlaneNum Design FlightNum Paper Thrower FlightTime

49 13 stingray glider 1 rice Alicia 0.969

50 13 stingray glider 2 rice Sarah 1.680

51 13 stingray glider 3 rice Rachelle 0.480

52 13 stingray glider 4 rice Jake 1.287

53 14 stingray glider 1 plain Alicia 1.680

54 14 stingray glider 2 plain Sarah 2.580

Displacement LandPosition Landing Interference

49 4.44 up nosedive no

50 4.93 up nosedive no

51 3.32 down nosedive no

52 6.09 up glide no

53 7.40 up glide furniture

54 10.94 up glide no

We’ve used the dim() and head() commands here to show the fact that the irrelevant rows

have been removed.

We can investigate the differences among the performances of the paper planes using a

boxplot before fitting the one-way ANOVA model.
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Figure 8.4 on page 237 of Utts and Heckard.

> boxplot(FlightTime ~ Paper, data = StingRay)

cartridge plain rice

1
2

3
4

5

> summary(StingRay.aov1 <- aov(FlightTime ~ Paper, data = StingRay))

Df Sum Sq Mean Sq F value Pr(>F)

Paper 2 4.1 2.05 2.16 0.13

Residuals 45 42.8 0.95

8.3 Assumptions and diagnostics for ANOVA

We created (and therefore stored) the model object called GreenLights.aov in Section 8.2.

We can now investigate the assumptions of the model using the residual analysis graphs found

using the plot(), qqnorm() and qqline() commands.

Notice that R generates a set of four plots when the plot() command is applied to the

model object, as shown in Extra Figure 8.3 on page 54 of this manual. The two graphs we want

are then created manually using separate code in Figures ?? and 8.7. The other two graphs

are not required for use with Utts and Heckard but may be explained in higher level statistics

courses. Use of the par() command puts the four graphs into one window in R. The user will

need to click through the various windows if this command is not issued. In that case, the

user has the option of using one command and then finding the graphs wanted, or issuing the

commands that give only the desired graphs.

Notice how in the continuation of Example 8.9 on page 241 we take the logarithm of the

response data. This is achieved using the log() command inside the single command that does

all the work!
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Extra Figure 2 is not a replication of work given in Utts and Heckard.

> par(mfrow = c(2, 2))

> plot(GreenLights.aov)
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> summary(StingRay.aov2 <- aov(log(FlightTime) ~ Paper, data = StingRay))

Df Sum Sq Mean Sq F value Pr(>F)

Paper 2 1.41 0.704 3.37 0.043 *
Residuals 45 9.40 0.209

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

The residuals for the model using the raw response data are investigated in Figure 8.9, while

the logged response data leads to residuals plotted in Figure 8.10.

8.4 Other methods for investigating effects of a

categorical variable on a continuous variable

We apply the Kruskal-Wallis test for the PaperPlanes dataset using the kruskal.test():

> kruskal.test(FlightTime ~ Paper, data = StingRay)

Kruskal-Wallis rank sum test

data: FlightTime by Paper

Kruskal-Wallis chi-squared = 8.771, df = 2, p-value = 0.0124 6
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Figure 8.6 and Figure 8.7, both on page 240 of Utts and Heckard.

> Residuals = residuals(GreenLights.aov)

> Fits = fitted(GreenLights.aov)

> plot(Residuals ~ Fits)

> qqnorm(Residuals)

> qqline(Residuals)
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Figure 8.9 on page 241 of Utts and Heckard.

> Residuals = residuals(StingRay.aov2)

> qqnorm(Residuals)

> qqline(Residuals)

> Fits = fitted(StingRay.aov2)

> plot(Residuals ~ Fits)
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Figure 8.10 on page 242 of Utts and Heckard.

> Residuals = residuals(StingRay.aov2)

> qqnorm(Residuals)

> qqline(Residuals)

> Fits = fitted(StingRay.aov2)

> plot(Residuals ~ Fits)
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Note that Mood’s median test is not included in R.

8.5 Multiple comparisons

The set of simultaneous confidence intervals for the differences between all pairs of treatments

can be found using the TukeyHSD() command. The results from this command applied to the

GreenLights data can be provided in two ways; we can have the output in text form, but can

also use the associated plot() command to give us a graphical summary of the comparisons

(see Figure 8.13).

We created (and therefore stored) the model object called GreenLights.aov in Section 8.2.

We now use this model to show the use of the TukeyHSD() command:

> GreenLights.HSD = TukeyHSD(GreenLights.aov)

> GreenLights.HSD

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Time ~ AgeGroup, data = GoGoGo, subset = Li ghts == "green")

$AgeGroup

diff lwr upr p adj
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>40-<30 0.75900 -0.02278 1.541 0.0587

30-40-<30 -0.05633 -0.69465 0.582 0.9752

30-40->40 -0.81533 -1.45365 -0.177 0.0092

Figure 8.13 on page 248 of Utts and Heckard.

> plot(GreenLights.HSD)
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8.6 Two-way ANOVA

The aov() command is used for two-way analyses in a very similar way to the one-way analysis

shown above. We just (quite literally) add the second factor to the right-hand-side of the model

specified.

We illustrate the two-way analysis of variance model using the TimePerception dataset,

obtained using:

> data(TimePerception, package = "MindOnStats")

We can see the interaction plot in Figure 8.15, and then fit the model (including an inter-

action) using:

> summary(aov(TenSec ~ Gender * AgeGroup, data = TimePerception))

Df Sum Sq Mean Sq F value Pr(>F)

Gender 1 0.3 0.25 0.10 0.749

AgeGroup 5 31.6 6.32 2.55 0.032 *
Gender:AgeGroup 5 27.3 5.46 2.21 0.059 .

Residuals 108 267.4 2.48

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1
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Figure 8.15 on page 251 of Utts and Heckard.

> attach(TimePerception)

> interaction.plot(response = TenSec, x.factor = AgeGroup,

trace.factor = Gender)

> detach(TimePerception)
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Example 8.10’s continuation on page 255 uses a log transformation again.

> summary(Planes.aov2 <- aov(FlightTime ~ Paper * Design, data = PaperPlanes))

Df Sum Sq Mean Sq F value Pr(>F)

Paper 2 0.7 0.35 0.66 0.5167

Design 2 6.8 3.40 6.36 0.0023 **
Paper:Design 4 8.8 2.19 4.10 0.0036 **
Residuals 135 72.2 0.53

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

> lnFlightTime = log(PaperPlanes$FlightTime)

> summary(Planes.aov3 <- aov(lnFlightTime ~ Paper * Design,

data = PaperPlanes))

Df Sum Sq Mean Sq F value Pr(>F)

Paper 2 0.03 0.017 0.10 0.90527

Design 2 2.09 1.045 6.03 0.00309 **
Paper:Design 4 4.07 1.017 5.88 0.00022 ***
Residuals 135 23.37 0.173

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

The residual analyses for these two models are given in Figures 8.18 (for raw response data)

and 8.19 (for logged response data).
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Figure 8.18 on page 255 of Utts and Heckard.

> Residuals = residuals(Planes.aov2)

> qqnorm(Residuals)

> qqline(Residuals)

> Fits = fitted(Planes.aov2)

> plot(Residuals ~ Fits)
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Figure 8.19 on page 256 of Utts and Heckard.

> Residuals = residuals(Planes.aov3)

> qqnorm(Residuals)

> qqline(Residuals)

> Fits = fitted(Planes.aov3)

> plot(Residuals ~ Fits)
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The continuation of Example 8.6 on page 256 where we deal with unbalanced data is impor-

tant to illustrate. In any situation where new software is used, the user must make themselves

aware of the way unbalanced data are handled. We re-order the factors here to show that R

uses the sequential sum of squares approach for the aov() command.

> summary(aov(Time ~ Gender * Lights, data = GoGoGo))

Df Sum Sq Mean Sq F value Pr(>F)

Gender 1 0.0 0.03 0.07 0.79

Lights 1 13.4 13.39 27.90 8e-07 ***
Gender:Lights 1 0.8 0.84 1.74 0.19

Residuals 96 46.1 0.48

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

> summary(aov(Time ~ Lights * Gender, data = GoGoGo))

Df Sum Sq Mean Sq F value Pr(>F)

Lights 1 13.4 13.35 27.81 8.2e-07 ***
Gender 1 0.1 0.07 0.15 0.70

Lights:Gender 1 0.8 0.84 1.74 0.19

Residuals 96 46.1 0.48

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

8.7 More on continuous response and categorical

explanatory variables

To test for the homogeneity of variance, R has the bartlett.test() command for Bartlett’s

test. Levene’s test is not implemented in base R, but is available through a number of additional

packages.

Applying Bartlett’s test to the Textbooks dataset fused in this chapter, we find:

> bartlett.test(Price ~ Discipline, data = Textbooks)

Bartlett test of homogeneity of variances

data: Price by Discipline

Bartlett's K-squared = 29.6, df = 13, p-value = 0.005383

8.8 Models, notation and calculations for ANOVA

There are no examples in this section that require use of R.



Chapter 9

Regression: investigating relationships

between continuous variables

9.1 Some examples of data investigations that include

continuous responses and quantitative explanatory

variables

No examples in this section require use of R.

9.2 Simple linear regression

The lm() command fits a linear model to data. It has an associated summary() command and

we will see later that it also has an associated plot() command.

This section of the Asia-Pacific edition of Utts and Heckard relies on the dataset given in the

U.S. edition. This dataset (and all others supplied with the U.S. edition) has been included as

part of the MindOnStats package for your convenience. Obtain the HandHeight dataset using:

> data(HandHeight, package = "MindOnStats")

> str(HandHeight)

'data.frame': 167 obs. of 3 variables:

$ Sex : Factor w/ 2 levels "Female","Male": 1 2 2 1 2 1 2 2 1 1 ...

$ Height : num 68 71 73 64 68 59 73 75 65 69 ...

$ HandSpan: num 21.5 23.5 22.5 18 23.5 20 23 24.5 21 20.5 ...

We need to wait until the model has been fitted in the next example before illustrating how

to add the fitted line to the plot.

We replicate Table 9.1 to provide the R version of the Minitab output in Figure 9.4.

61
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Figure 9.3 on page 294 of Utts and Heckard.

> plot(HandSpan ~ Height, data = HandHeight, ylab = "Hand span")
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> summary(Hand.lm <- lm(HandSpan ~ Height, data = HandHeight))

Call:

lm(formula = HandSpan ~ Height, data = HandHeight)

Residuals:

Min 1Q Median 3Q Max

-3.389 -0.935 0.013 1.036 2.663

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.0016 1.6939 -1.77 0.078 .

Height 0.3506 0.0248 14.11 <2e-16 ***
---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.3 on 165 degrees of freedom

Multiple R-squared: 0.547, Adjusted R-squared: 0.544

F-statistic: 199 on 1 and 165 DF, p-value: <2e-16

In this example, we introduce the ‘<-’ way of assigning an object to a name. This has the effect

of nesting one command inside another in a slightly more elegant way than those shown so far.

Different R users will have their preferences over which approach they use. The residual analysis

for this model is presented in Figure 9.4 and the Extra Figure on page 63 of this manual shows

how to add the fitted line to the scatterplot of the data.

To get this line added to the plot we use the abline() command. In this case, the command
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Figure 9.4 on page 295 of Utts and Heckard.

> Residuals = residuals(Hand.lm)

> qqnorm(Residuals)

> qqline(Residuals)

> Fits = fitted(Hand.lm)

> plot(Residuals ~ Fits)
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Extra Figure 3 is not a replication of work given in Utts and Heckard.

> plot(HandSpan ~ Height, data = HandHeight)

> abline(Hand.lm)
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finds the intercept and slope coefficients from the model and uses them to plot the straight line.

We will see later that this command is useful for adding other straight lines to scatterplots.

We need the Cereals dataset for several examples in this chapter. Obtain it using the

data() command as before, and investigate its structure using the str() command, then fit

the simple regression model using the summary() and lm() commands as follows:

> data(Cereals, package = "MindOnStats")

> str(Cereals)

'data.frame': 43 obs. of 10 variables:

$ Name : Factor w/ 42 levels "All Bran","Bran Flakes",..: 1 2 7 8 5 6 4 11 10 21 ...

$ Manufacturer: Factor w/ 3 levels "Kelloggs","Sanitarium ",..: 1 1 1 1 1 1 1 1 1 1 ...

$ Weight : int 350 375 340 310 275 400 450 275 300 525 ...

$ Energy : int 1399 1428 1602 1626 1582 1681 1607 1670 1637 1489 ...

$ Protein : num 15 11.6 6.7 6 7.8 7.1 5.4 6.1 6.4 8.1 ...

$ Carbo : num 47.8 59.2 85.6 88.5 83.6 80.8 88.5 86.3 85.5 72.1 . ..

$ Dfibre : num 27.5 17.4 1.1 1.1 2.6 2.5 1.2 2.3 2.4 8.3 ...

$ Iron : num 6.7 10 NA NA 10 10 10 10 10 6.7 ...

$ Price : num 2.72 2.88 3.99 3.91 2.28 3.65 4.05 4.06 4.06 4.64 . ..

$ Per100g : num 0.777 0.768 1.174 1.261 0.829 ...

> summary(Energy.lm <- lm(Energy ~ Dfibre, data = Cereals))

Call:

lm(formula = Energy ~ Dfibre, data = Cereals)

Residuals:

Min 1Q Median 3Q Max

-174.81 -19.50 8.16 38.21 108.36

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1611.67 15.53 103.75 < 2e-16 ***
Dfibre -10.69 1.25 -8.57 1.1e-10 ***
---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

Residual standard error: 65.8 on 41 degrees of freedom

Multiple R-squared: 0.642, Adjusted R-squared: 0.633

F-statistic: 73.5 on 1 and 41 DF, p-value: 1.1e-10

We then present the graphs for the residual analysis for this model in Figure 9.6.

9.3 Messages from residuals

Most examples in this section do not use new ways of working in R.

The example using a quadratic form of the predictor that appears on pages 303-304 cannot

be emulated as the data are not available. In this instance, we can either create a new variable
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Figure 9.6 on page 299 of Utts and Heckard.

> qqnorm(residuals(Energy.lm))

> qqline(residuals(Energy.lm))

> plot(residuals(Energy.lm) ~ fitted(Energy.lm))
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manually, or use the poly() command. We illustrate the use of the poly() command on

page 71 of this manual.

The graphs that appear in Figure 9.13 use a model created for the textbook data

> data(Textbooks, package = "MindOnStats")

> summary(BookWeight.lm <- lm(Weight ~ Thickness, data = Textbooks))

Call:

lm(formula = Weight ~ Thickness, data = Textbooks)

Residuals:

Min 1Q Median 3Q Max

-1080.5 -234.9 -27.3 186.1 1407.1

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -54.58 46.88 -1.16 0.25

Thickness 43.93 1.59 27.70 <2e-16 ***
---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

Residual standard error: 385 on 392 degrees of freedom

Multiple R-squared: 0.662, Adjusted R-squared: 0.661

F-statistic: 767 on 1 and 392 DF, p-value: <2e-16

Note that R does not plot a horizontal line on the residuals vs fitted values plot. This can

be added manually using the abline() command.
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Figure 9.13 on page 307 of Utts and Heckard.

> Residuals = residuals(BookWeight.lm)

> qqnorm(Residuals)

> qqline(Residuals)

> Fits = fitted(BookWeight.lm)

> plot(Residuals ~ Fits)

> abline(h = 0)
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The model can be re-fitted using the transformed response variable; created using the sqrt()

command:

> sqrtWeight = sqrt(Textbooks$Weight)

9.4 Multiple regression

The lm() command already introduced is easily extended to allow for multiple predictors in

our models. We just add (quite literally) the additional predictors to the right-hand-side of the

model.

> summary(Energy.lm2 <- lm(Energy ~ Protein + Carbo + Dfibre,

data = Cereals))

Call:

lm(formula = Energy ~ Protein + Carbo + Dfibre, data = Cereals )

Residuals:

Min 1Q Median 3Q Max

-105.8 -25.0 -9.8 28.6 127.0
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1212.83 93.50 12.97 1.0e-15 ***
Protein 3.80 2.27 1.68 0.1

Carbo 4.59 1.04 4.41 8.0e-05 ***
Dfibre -7.91 1.24 -6.40 1.5e-07 ***
---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

Residual standard error: 55.1 on 39 degrees of freedom

Multiple R-squared: 0.761, Adjusted R-squared: 0.742

F-statistic: 41.4 on 3 and 39 DF, p-value: 3.43e-12

Figure 9.15 on page 310 of Utts and Heckard.

> Residuals = residuals(Energy.lm2)

> Fits = fitted(Energy.lm2)

> par(mfrow = c(2, 2))

> plot(Residuals ~ Cereals$Protein, xlab = "Protein")

> abline(h = 0)

> plot(Residuals ~ Cereals$Carbo, xlab = "Carbohydrates")

> abline(h = 0)

> plot(Residuals ~ Cereals$Dfibre, xlab = "Dietary fibre")

> abline(h = 0)

> plot(Residuals ~ Fits, xlab = "Fitted values")

> abline(h = 0)
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On page 311 there is an example of different slopes for the two groups. This is actually

more easily achieved in R than other statistical sofware such as Minitab.
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> data(TimePerception, package = "MindOnStats")

> summary(TenSec.lm <- lm(TenSec ~ FiveSec * Gender, data = TimePerception))

Call:

lm(formula = TenSec ~ FiveSec * Gender, data = TimePerception)

Residuals:

Min 1Q Median 3Q Max

-3.790 -0.750 -0.026 0.568 3.703

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.580 0.764 5.99 2.4e-08 ***
FiveSec 1.063 0.166 6.41 3.3e-09 ***
Gendermale 0.823 1.118 0.74 0.46

FiveSec:Gendermale -0.145 0.246 -0.59 0.56

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.34 on 116 degrees of freedom

Multiple R-squared: 0.366, Adjusted R-squared: 0.349

F-statistic: 22.3 on 3 and 116 DF, p-value: 1.8e-11

We take the opportunity to show the outcome of the model fitted here by plotting the fitted

values against the x-variable. See the Extra Figure 9.4.

Extra Figure 4 is not a replication of work given in Utts and Heckard.

> plot(fitted(TenSec.lm) ~ TimePerception$FiveSec, xlab = "Five seconds",

main = "Predicted values for Ten Seconds vs actual data for Five Seconds",

ylab = "Fitted values")
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Note that this is an alternative to plotting the original data using different symbols for the

two groups seen in Chapter 3 (page 28 of this manual).

The next example using the Textbooks dataset includes both a categorical variable and

continuous variables in the model as predictors.

> summary(Price.lm1 <- lm(Price ~ Thickness + Weight + Year +

Coverstyle + Colour + CD, data = Textbooks))

Call:

lm(formula = Price ~ Thickness + Weight + Year + Coverstyle +

Colour + CD, data = Textbooks)

Residuals:

Min 1Q Median 3Q Max

-71.45 -13.81 -0.57 14.24 98.17

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.15e+03 8.60e+02 2.50 0.01301 *
Thickness 6.17e-01 1.81e-01 3.40 0.00074 ***
Weight 2.05e-02 4.01e-03 5.10 5.2e-07 ***
Year -1.05e+00 4.29e-01 -2.44 0.01519 *
CoverstyleS -3.60e+00 3.15e+00 -1.14 0.25430

ColourY 7.08e+00 3.06e+00 2.31 0.02123 *
CDY -2.20e+00 4.00e+00 -0.55 0.58334

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

Residual standard error: 22.7 on 387 degrees of freedom

Multiple R-squared: 0.489, Adjusted R-squared: 0.481

F-statistic: 61.7 on 6 and 387 DF, p-value: <2e-16

Notice how R has chosen to produce a set of boxplots to depict the differences between the

residuals for the categorical variable in Figure 9.16 which plots the residuals against the three

predictors. Some statisticians might think to fit the Year variable as a factor in this situation;

the series of vertically arranged dots for the residuals is common for discrete-valued predictors.

The next model has allowed the continuous predictors to have nonlinear effects on the

response:

> summary(Price.lm2 <- lm(Price ~ poly(Thickness, 2, raw = TRUE) +

poly(Weight, 2, raw = TRUE) + Year + Coverstyle + Colour +

CD, data = Textbooks))

Call:

lm(formula = Price ~ poly(Thickness, 2, raw = TRUE) + poly(We ight,

2, raw = TRUE) + Year + Coverstyle + Colour + CD, data = Textbook s)

Residuals:

Min 1Q Median 3Q Max
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Figure 9.16 on page 312 of Utts and Heckard.

> Residuals = residuals(Price.lm1)

> attach(Textbooks)

> plot(Residuals ~ Weight)

> abline(h = 0)

> plot(Residuals ~ Colour)

> plot(Residuals ~ Year)

> abline(h = 0)

> detach(Textbooks)
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-77.26 -12.72 -0.11 10.94 90.66

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.30e+03 7.90e+02 2.92 0.0038 **
poly(Thickness, 2, raw = TRUE)1 4.57e-01 4.57e-01 1.00 0.31 84

poly(Thickness, 2, raw = TRUE)2 -5.34e-03 6.17e-03 -0.87 0. 3870

poly(Weight, 2, raw = TRUE)1 7.32e-02 8.46e-03 8.65 < 2e-16 ***
poly(Weight, 2, raw = TRUE)2 -1.50e-05 2.19e-06 -6.86 2.7e- 11 ***
Year -1.14e+00 3.94e-01 -2.88 0.0041 **
CoverstyleS -3.21e+00 2.89e+00 -1.11 0.2670

ColourY 1.78e+00 2.85e+00 0.63 0.5317

CDY -1.22e+00 3.65e+00 -0.33 0.7390

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.7 on 385 degrees of freedom

Multiple R-squared: 0.578, Adjusted R-squared: 0.57

F-statistic: 66 on 8 and 385 DF, p-value: <2e-16

Note the use of the poly() command to create a set of polynomial effects for the Thickness

and Weight variables. The raw argument is required; if it is not given explicitly, the variable is

centred before the squared term is found.

9.5 Some formulae in regression

Unlike other software, R does not give the full analysis of variance table for the model. Rather

we are given just the F -statistic and its hypothesis test. If you want to generate the ANOVA,

use the anova() command applied to a model object. For example:

> anova(Energy.lm)

Analysis of Variance Table

Response: Energy

Df Sum Sq Mean Sq F value Pr(>F)

Dfibre 1 317914 317914 73.5 1.1e-10 ***
Residuals 41 177435 4328

---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

To find a 95% confidence interval for the slope parameter in our model, we use the confint()

command. For example:

> confint(Energy.lm)

2.5 % 97.5 %

(Intercept) 1580.30 1643.045

Dfibre -13.21 -8.173
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If we wish to make new predictions based on a regression model, we need to create a new

data.frame that has the same variables as the original data that was used to create the model.

We can then create a prediction interval or confidence interval for any combination of values

for the set of predictors in the model we are working with.

> predict(Energy.lm, Cereals[1:5, ], interval = "prediction")

fit lwr upr

1 1318 1176 1459

2 1426 1290 1561

3 1600 1464 1736

4 1600 1464 1736

5 1584 1448 1719

> predict(Energy.lm, Cereals[1:5, ], interval = "confidence")

fit lwr upr

1 1318 1268 1367

2 1426 1397 1454

3 1600 1571 1629

4 1600 1571 1629

5 1584 1557 1611
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Interval estimation: one or two

continuous variables

10.1 The sample mean

There is no work requiring R in this section.

10.2 Confidence interval for the mean of a continuous

variable

To calculate a confidence interval using manual calculations, we will need to obtain quantiles

from the t-distribution using the qt() command. For example:

> qt(c(0.025, 0.975), df = 24)

[1] -2.064 2.064

will find the values needed to calculate a 95% confidence interval based on a sample of size 25,

which means we have only 24 degrees of freedom. Compare this to the EXCEL tip on page 347.

The t.test() command is useful for creating a confidence interval for the population mean

when we already have a sample. We use the data given on page 349 to illustrate various

examples in this section.

> PhoneCalls = c(0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15,

4.67, 4.85, 6.5, 7.35, 8.01, 8.29, 12.06, 31.75, 32.52,

33.91, 36.71, 72.89)

If the assumptions for the use of the t-distribution approach are not met then we would use the

wilcox.test() command which calculates the Wilcoxon signed rank test.

> t.test(PhoneCalls)

73



74 Chapter 10. Interval estimation: one or two continuous variables

One Sample t-test

data: PhoneCalls

t = 3.315, df = 18, p-value = 0.003849

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

5.26 23.46

sample estimates:

mean of x

14.36

> wilcox.test(PhoneCalls, conf.int = TRUE)

Wilcoxon signed rank test

data: PhoneCalls

V = 190, p-value = 3.815e-06

alternative hypothesis: true location is not equal to 0

95 percent confidence interval:

4.15 20.02

sample estimates:

(pseudo)median

8.058

Note that both of these commands generate more output than we need at this time.

At this time there is no functionality within R to perform the Sign Test as described on

page 348.

10.3 Difference between two means

There is no work requiring R in this section.

10.4 Confidence interval for difference between two

means

The t.test() command is useful for creating a confidence interval for the difference between

the means of two populations when we already have samples.

We use the Reflexes dataset for this example. Obtain it using:

> data(Reflexes, package = "MindOnStats")

> str(Reflexes)

'data.frame': 40 obs. of 9 variables:

$ Gender : Factor w/ 2 levels "F","M": 1 2 1 1 2 2 1 2 2 2 ...

$ RightFluoro: num 20.2 21.1 28.2 19.3 26.2 22.9 26.6 19.6 12. 1 27 ...

$ LeftFluoro : num 21.4 25.9 19 28.9 21.6 18.9 27.4 22.3 16.4 15 .1 ...

$ RightClear : num 22.6 19.3 18.1 21 25.5 27.4 27.5 17.4 14.8 22 .8 ...
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$ LeftClear : num 24.9 28.5 25.7 27.8 19.7 18.4 29 21.7 17.9 19. 6 ...

$ Handedness : Factor w/ 2 levels "L","R": 2 2 2 2 1 1 2 2 2 1 ...

$ Miss : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...

$ Age : int 49 53 23 52 54 32 30 22 15 17 ...

$ AgeGroup : Factor w/ 3 levels "0-34","35-69",..: 2 2 1 2 2 1 1 1 1 1 ...

Utts and Heckard do not show the confidence interval for the paired t-test, but this dataset is

available and the histograms do appear on page 355. Note the use of the paired argument in

the t.test() command.

> attach(Reflexes)

> t.test(RightFluoro, RightClear, paired = TRUE)

Paired t-test

data: RightFluoro and RightClear

t = -1.294, df = 33, p-value = 0.2046

alternative hypothesis: true difference in means is not equ al to 0

95 percent confidence interval:

-2.9729 0.6611

sample estimates:

mean of the differences

-1.156

> detach(Reflexes)

Turning to data that is not paired, we use the HoldingBreath dataset. Obtain it using:

> data(HoldingBreath, package = "MindOnStats")

We can now see how to use the var.equal argument of the t.test() command. We also

benefit from being able to use the data argument, and a model formula to specify the nature

of the work we are doing.

> t.test(Time ~ Smoker, data = HoldingBreath)

Welch Two Sample t-test

data: Time by Smoker

t = -2.86, df = 52.85, p-value = 0.006047

alternative hypothesis: true difference in means is not equ al to 0

95 percent confidence interval:

-19.161 -3.364

sample estimates:

mean in group n mean in group y

46.34 57.60

> t.test(Time ~ Smoker, data = HoldingBreath, var.equal = TRUE)

Two Sample t-test

data: Time by Smoker
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t = -2.411, df = 100, p-value = 0.01775

alternative hypothesis: true difference in means is not equ al to 0

95 percent confidence interval:

-20.532 -1.994

sample estimates:

mean in group n mean in group y

46.34 57.60

Notice that we did not explicitly specify the var.equal argument in the first command as the

default action is to not assume equal variances.

10.5 Tolerance intervals for individual values

There are no additional R commands to introduce in this section. Basic calculations are re-

quired, however.

10.6 Confidence interval for a standard deviation

There is no command in R that will calculate the confidence interval for σ. We illustrate

the commands that will assist performing the manual calculations. We use the qchisq()

command to obtain quantiles from the χ2-distribution and then follow the necessary steps

given on page 366.

> qchisq(c(0.025, 0.975), df = 12)

[1] 4.404 23.337

> 12 * 0.024^2/qchisq(c(0.025, 0.975), df = 12)

[1] 0.0015696 0.0002962

> sqrt(12 * 0.024^2/qchisq(c(0.975, 0.025), df = 12))

[1] 0.01721 0.03962

Notice the swapping of the order of the two quantities sought by the qchisq() command in

the last step. This gets the final answer in the correct (more natural) order.

10.7 Sample size required to estimate a mean with a

desired precision

This section only uses basic calculations and does not require introduction of any additional R

commands.
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Testing hypotheses about means,

proportions and variances in one and

two samples

11.1 Overview of statistical hypothesis testing

No examples in this section require use of R.

11.2 Testing hypotheses about a proportion

We can use the prop.test() command to perform a test on a single proportion. The binom.test()

is an alternative. See the differences between these commands in the discussion of the related

confidence intervals on page 47 of this manual.

In Example 11.7 we need the probability of getting 7 or more correct guesses out of 10 when

each question has two options. On page 43 of this manual, we showed how to calculate a set of

binomial probabilities. We repeat the task here for this example.

> sum(dbinom(7:10, size = 10, prob = 0.5))

[1] 0.1719

> pbinom(6, size = 10, prob = 0.5, lower.tail = FALSE)

[1] 0.1719

Then for 8 or more:

> sum(dbinom(8:10, size = 10, prob = 0.5))

[1] 0.05469

> pbinom(7, size = 10, prob = 0.5, lower.tail = FALSE)

[1] 0.05469

77
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At the bottom of page 387, there is the z-test for a proportion. This is done manually using

the pnorm() command as follows:

> p = 0.5

> n = 100

> s = sqrt(p * (1 - p)/n)

> pnorm(0.6, mean = p, sd = s, lower.tail = FALSE)

[1] 0.02275

> qnorm(0.95, mean = p, sd = s, lower.tail = FALSE)

[1] 0.4178

Turning to Example 11.8 on page 390 for another example, we implement the binom.test()

and prop.test() commands after doing manual calculations as follows:

> p = 0.5

> n = 203

> s = sqrt(p * (1 - p)/n)

> pnorm(87/203, mean = p, sd = s, lower.tail = FALSE)

[1] 0.9791

> binom.test(87, 203, alternative = "less")

Exact binomial test

data: 87 and 203

number of successes = 87, number of trials = 203, p-value =

0.02456

alternative hypothesis: true probability of success is les s than 0.5

95 percent confidence interval:

0.0000 0.4887

sample estimates:

probability of success

0.4286

> prop.test(87, 203, alternative = "less")

1-sample proportions test with continuity correction

data: 87 out of 203, null probability 0.5

X-squared = 3.862, df = 1, p-value = 0.02469

alternative hypothesis: true p is less than 0.5

95 percent confidence interval:

0.0000 0.4887

sample estimates:

p

0.4286
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> prop.test(87, 203, , alternative = "less", correct = FALSE)

1-sample proportions test without continuity correction

data: 87 out of 203, null probability 0.5

X-squared = 4.143, df = 1, p-value = 0.02091

alternative hypothesis: true p is less than 0.5

95 percent confidence interval:

0.0000 0.4863

sample estimates:

p

0.4286

Note the need to stipulate the alternative argument in both the binom.test() and prop.test()

commands here. The default was two-sided.

Similarly, Example 11.9 on page 392 illustrates another one-sided test:

> binom.test(68, 400, p = 0.2, alternative = "less")

Exact binomial test

data: 68 and 400

number of successes = 68, number of trials = 400, p-value =

0.07323

alternative hypothesis: true probability of success is les s than 0.2

95 percent confidence interval:

0.0000 0.2039

sample estimates:

probability of success

0.17

> prop.test(68, 400, p = 0.2, alternative = "less")

1-sample proportions test with continuity correction

data: 68 out of 400, null probability 0.2

X-squared = 2.066, df = 1, p-value = 0.07529

alternative hypothesis: true p is less than 0.2

95 percent confidence interval:

0.0000 0.2044

sample estimates:

p

0.17

> prop.test(68, 400, p = 0.2, alternative = "less", correct = FALSE)

1-sample proportions test without continuity correction

data: 68 out of 400, null probability 0.2

X-squared = 2.25, df = 1, p-value = 0.06681
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alternative hypothesis: true p is less than 0.2

95 percent confidence interval:

0.0000 0.2031

sample estimates:

p

0.17

11.3 Testing hypotheses about the difference in two

proportions

We can use the prop.test() command to test the differences between a pair of proportions.

Looking at Example 11.10 on page 395:

> prop.test(c(65, 51), c(111, 92))

2-sample test for equality of proportions with continuity

correction

data: c(65, 51) out of c(111, 92)

X-squared = 0.0932, df = 1, p-value = 0.7602

alternative hypothesis: two.sided

95 percent confidence interval:

-0.1155 0.1780

sample estimates:

prop 1 prop 2

0.5856 0.5543

Notice that we enter the two numerators as the first argument and the two denominators as

the second argument to the prop.test() command here.

11.4 Connection with testing independence in

contingency tables

We use the matrix() and c() commands to enter the data for Example 11.11 from page 396

into a 2×2 matrix.

> Ex11.11 = matrix(c(10, 37, 11, 54), nrow = 2)

> Ex11.11

[,1] [,2]

[1,] 10 11

[2,] 37 54

The use of the prop.test() command as done previously gives:
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> prop.test(c(10, 11), c(47, 65))

2-sample test for equality of proportions with continuity

correction

data: c(10, 11) out of c(47, 65)

X-squared = 0.1137, df = 1, p-value = 0.7359

alternative hypothesis: two.sided

95 percent confidence interval:

-0.1231 0.2102

sample estimates:

prop 1 prop 2

0.2128 0.1692

We can use the chisq.test() and fisher.test() commands to check the independence of

the two factors here.

> chisq.test(Ex11.11)

Pearson's Chi-squared test with Yates' continuity correct ion

data: Ex11.11

X-squared = 0.1137, df = 1, p-value = 0.7359

> fisher.test(Ex11.11)

Fisher's Exact Test for Count Data

data: Ex11.11

p-value = 0.6273

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.4529 3.8329

sample estimates:

odds ratio

1.323

The chisq.test() command does not allow for any one-sided hypothesis testing, but the

fisher.test() command does. In contrast to Minitab (and the output given on page 397), R

uses the odds ratio as the basis of the hypothesis test:

> fisher.test(Ex11.11, alternative = "greater")

Fisher's Exact Test for Count Data

data: Ex11.11

p-value = 0.3655

alternative hypothesis: true odds ratio is greater than 1

95 percent confidence interval:

0.5302 Inf

sample estimates:

odds ratio

1.323
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11.5 Testing hypotheses about one mean

We will use the t.test() command to perform a test about a single population mean. In

Example 11.12 on page 402, we need the GoGoGo dataset again.

> data(GoGoGo, package = "MindOnStats")

but this time we are only interested in the observations relevant to an amber light. We create

another dataset and test that its mean is less than 3.6 seconds by:

> AmberLights = GoGoGo$Time[GoGoGo$Lights == "amber"]

> t.test(AmberLights, mu = 3.6, alternative = "less")

One Sample t-test

data: AmberLights

t = -1.889, df = 49, p-value = 0.0324

alternative hypothesis: true mean is less than 3.6

95 percent confidence interval:

-Inf 3.582

sample estimates:

mean of x

3.441

11.6 Testing hypotheses about the mean of paired

differences

We will use the t.test() command to perform a test about the population mean difference

using data from paired samples.

Example 11.13 on page 403 uses data which we enter manually using the c() command:

> Airport = c(283591, 269620, 312220, 300679, 217889, 381030,

232288, 186285, 230672, 248172, 221898, 257073)

> City = c(188010, 197874, 193954, 210545, 212116, 277022,

239715, 197761, 256650, 182655, 146602, 149663)

> t.test(Airport, City, paired = T)

Paired t-test

data: Airport and City

t = 3.804, df = 11, p-value = 0.002924

alternative hypothesis: true difference in means is not equ al to 0

95 percent confidence interval:

24188 90620

sample estimates:

mean of the differences

57404
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The alternative way of working is to create a single sample and use the t.test() command as

if we were working with a single sample:

> Difference = Airport - City

> t.test(Difference)

One Sample t-test

data: Difference

t = 3.804, df = 11, p-value = 0.002924

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

24188 90620

sample estimates:

mean of x

57404

11.7 Testing hypotheses about the difference between

two means

We will use the t.test() command to perform a test about the difference between the means

of two populations.

As we do not have the data for the example given, we use the GoGoGo dataset again here.

The following is not in Utts and Heckard.

> t.test(Time ~ Lights, data = GoGoGo)

Welch Two Sample t-test

data: Time by Lights

t = -5.277, df = 91.65, p-value = 8.759e-07

alternative hypothesis: true difference in means is not equ al to 0

95 percent confidence interval:

-1.0059 -0.4557

sample estimates:

mean in group amber mean in group green

3.441 4.172

The only reason for offering this example is that we illustrate the ability to showcase the formula

approach to performing the test.

11.8 Non-parametric tests and medians

In Example 11.16 on page 411, we use the Reflexes dataset and the wilcox.test() to apply

the Wilcoxon signed rank test to see if there is a difference based on data from paired samples.
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> data(Reflexes, package = "MindOnStats")

> attach(Reflexes)

> wilcox.test(RightFluoro, RightClear, paired = TRUE, alternative = "less")

Wilcoxon signed rank test with continuity correction

data: RightFluoro and RightClear

V = 224.5, p-value = 0.1076

alternative hypothesis: true location shift is less than 0

> detach(Reflexes)

Note there are minor differences between the R output and the Minitab tip on page 411.

To show the two-sample version we create an example that does not appear in Utts and

Heckard.

> wilcox.test(RightFluoro ~ Gender, data = Reflexes)

Wilcoxon rank sum test with continuity correction

data: RightFluoro by Gender

W = 220, p-value = 0.4476

alternative hypothesis: true location shift is not equal to 0

Note that R does not call this a Mann-Whitney test explicitly; reading the help file for the

wilcox.test() shows that this is in fact what is happening when we apply this command.

11.9 Tests for one or two standard deviations

The Minitab tip on page 415 finds a proportion of values lower than a point on a χ2-distribution.

In R we use the pchisq() command. Replicating Example 11.18 on page 415 gives:

> TestVal = 28 * 0.25/0.35

> pchisq(20, df = 28)

[1] 0.1355

Example 11.19 on page 416 requires use of the F -distribution. The probability required is

found using the pf() command:

> pf(4/2.25, df1 = 9, df2 = 14, lower.tail = FALSE)

[1] 0.1613

Note that Utts and Heckard talk about doubling this p-value.

The var.test() command does this testing using sample data rather than summarised

data as we have in this example.
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11.10 The relationship between tests and confidence

intervals

No additional R commands need to be introduced in this section.

11.11 t-tests and ANOVA: correspondences and

pitfalls of t-testing in real investigations

No additional R commands need to be introduced in this section.

11.12 The rejection region approach to hypothesis

testing

No additional R commands need to be introduced in this section.

11.13 Sample size, statistical significance, practical

importance and effect size

The power.t.test() command is quite powerful in that it will perform the calculations for all

situations where the t.test() command would be used in the analysis. To replicate the findings

of Example 11.24, we show the corresponding code to replace the Minitab tip on page 432 using:

> power.t.test(delta = 0.5, sd = 1, sig.level = 0.05, power = 0.8,

type = "one.sample", alternative = "one.sided")

One-sample t test power calculation

n = 26.14

delta = 0.5

sd = 1

sig.level = 0.05

power = 0.8

alternative = one.sided

The answer provided is non-integer so the need to round up the result is left to the user.

The elements of Table 11.7 on page 431 are the estimated power given the other details.

These are found using:

> power.t.test(n = 20, delta = 0.8, sd = 1, sig.level = 0.05,

type = "one.sample", alternative = "one.sided")
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One-sample t test power calculation

n = 20

delta = 0.8

sd = 1

sig.level = 0.05

power = 0.9642

alternative = one.sided

The flexibility of the command is exposed as it does the calculation for the detail that is not

specified in the command.

Note that power calculations for proportions are done using the power.prop.test() com-

mand. It has a similar structure and functionality but is used in situations where the prop.test()

command will be used for the analysis.



Chapter 12

More on probability, random variables

and distributions

12.1 Events

There are no examples in this section that require R.

12.2 Probability rules

There are no examples in this section that require explicit use of R, but some calculations can

benefit from knowledge of an additional command.

The choose() command finds the number of combinations of size k from a set of size n.

Example 12.7 on page 456 uses:

> choose(4, 3)

[1] 4

12.3 Independence and conditional probability

There are no examples in this section that require R.

12.4 Using conditional probabilities

There are no examples in this section that require R.

12.5 Bayes’ theorem

There are no examples in this section that require R.
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12.6 Continuous distributions

Example 12.18 uses the uniform distribution. We can extract probabilities from this distribution

using the punif() command. For example:

> punif(4, min = 0, max = 10)

[1] 0.4

and we can construct the triangular distribution manually using:

> x = 1:10

> Fx = 1 - (10 - x)^2/100

> Fx

[1] 0.19 0.36 0.51 0.64 0.75 0.84 0.91 0.96 0.99 1.00

We can build our own function to do the work for us on any value of x.

> Triangular <- function(x) {

Fx = 1 - (10 - x)^2/100

return(Fx)

}

> Triangular(5.4)

[1] 0.7884

12.7 A very special process — the Poisson

On page 475 we want Pr(X > 10) where x is Poisson with λ = 12. We use the ppois()

command to find such probabilities.

> ppois(10, 12, lower.tail = FALSE)

[1] 0.6528

For individual probabilities we can use the dpois() command. Note the need to set the

threshhold at one less than the number we want included as the ppois() command is generally

adding up the individual probabilities up to and including this point. Use of the lower.tail

argument finds the complement if set to FALSE.

The exponential distribution values needed in the example on page 477 can be found using

the pexp() command:

> pexp(5, rate = 0.4, lower.tail = FALSE)

[1] 0.1353
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Sums and differences of random

variables

13.1 Examples for which this chapter is needed

There are no examples in this section that require R.

13.2 Sums and differences of two random variables

There are no examples in this section that require R. Note however that the cor() command

will calculate a correlation coefficient for a pair of samples.

13.3 Means and variances of linear combinations of

random variables

There are no examples in this section that require R.

13.4 Linear combinations of normal random variables

There are no examples in this section that require R.

13.5 Sums of some other independent random variables

There are no examples in this section that require R. The interested reader could investigate

R’s functionality for the gamma distribution and such commands as pgamma().
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13.6 The sample mean and the central limit theorem

There are no examples in this section that require R. Simulations proving the central limit

theorem might be done using the various random number generating commands for the dis-

tributions seen in Utts and Heckard. The interested reader could investigate the rnorm(),

rpois(), rgamma(), runif(), rexp() and rbinom() commands.

13.7 Combining ‘errors’

There are no examples in this section that require R.
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Some further data situations

14.1 A binary logistic regression

We need the Reflexes dataset to replicate Example 14.2 on page 510. Obtain it using:

> data(Reflexes, package = "MindOnStats")

We fit a binary logistic regression using the glm() command. This command has many

options and is used for more than just binary logistic regression.

> Reflexes.glm = glm(Miss ~ Age, data = Reflexes, family = "binomial")

> summary(Reflexes.glm)

Call:

glm(formula = Miss ~ Age, family = "binomial", data = Reflexe s)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.3486 -0.2323 -0.0402 -0.0308 1.8968

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.665 4.806 -2.01 0.044 *
Age 0.118 0.060 1.97 0.048 *
---

Signif. codes: 0 ' *** ' 0.001 ' ** ' 0.01 ' * ' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 37.098 on 39 degrees of freedom

Residual deviance: 19.726 on 38 degrees of freedom

AIC: 23.73

Number of Fisher Scoring iterations: 8
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The model statement given here is the most simple possible. The right-hand-side of the

model can be made more complicated in the same way as was done for multiple regression in

Chapter 9. We can also use the anova() and confint() commands for the glm() command

in similar fashion to the work done with the lm() command seen in Chapter 9. They are not

shown here as they provide information that is beyond the coverage of Utts and Heckard.

Utts and Heckard do present the confidence interval for the Odds Ratio. This is a slightly

protracted process in R. First we extract the part of the output given above that is a table

containing the two values we need.

> Coeff = summary(Reflexes.glm)$coef

> Coeff

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.6649 4.80646 -2.011 0.04435

Age 0.1183 0.05997 1.973 0.04848

Then (using subscript notation) we find the confidence interval of the log of the Odds Ratio.

This corresponds to other manual confidence interval calculations done in this manual.

> Coeff[2, 1] + c(-1.96, 1.96) * Coeff[2, 2]

[1] 0.0007903 0.2358849

and finally, we convert these values to being the Odds Ratio using the exp() command:

> exp(Coeff[2, 1] + c(-1.96, 1.96) * Coeff[2, 2])

[1] 1.001 1.266

14.2 Failure and survival data

The examples in this section build upon work already demonstrated in previous chapters of this

manual. The interested reader who wants to find probabilities for the Weibull distribution can

use the pweibull() command.



Appendix A

Some useful (but not necessary)

additional tasks

A.1 Using the script window

R users do not rely on typing all those commands out at the command line. We usually place

the commands for a large job in a text file and use the script window in R to edit and issue

some or all of the contents as we see fit.

We recommend looking at the series of files that accompany theMindOnStats package which

contain all the commands we issued for the creation of this manual, especially those for later

chapters where there are quite a few that are logically grouped together. They are all placed

in the RCode folder within the package.

If you are using the main R console, you will be able to pull down the File menu and see

options for a New script and Open script, which will open the script window with a blank

or existing file for the respective options.

The beauty of using this window is the ability to copy and paste commands, to run a

selection of them after making minor alterations, and being able to save the set of commands

at any time for later reference. We recommend experimenting with the script window.

A.2 Installing additional packages

It is common when performing advanced analyses that the base distribution of R doesn’t quite

cut it. On these occasions we often need an additional package that is not built into the base

distribution of R. You’ll need an internet connection for this task to work.

In the packages menu you will see the item for installing a package. There are literally

thousands of additional packages to choose from, but do not be tempted to waste time looking

at packages you don’t need.
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Search for the car package. After you download it, R will install it and if any additional

packages were required for it to work, these would have been downloaded as well.

To gain access to the functions and data in a package we will use the library() command.

For example:

> library(car)

would load the car package if you had been successful when you installed it. Note that you must

issue the library() command in each R session you need the package; it remains available if

you have loaded it in the current session but it is not automatically re-opened even if you save

your work on closing R.
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