Linear regression models can be conveniently expressed using matrix
notation.
In this lecture, we will see how results for linear models are much
more easily derived and understood using matrix notation than without
it.
Also note that the matrix approach is what is being done in the
background by all good statistical software including R.
Prediction and The Hat Matrix
The vector of fitted values is given by \(\hat{\boldsymbol{\mu}} = X
\hat{\boldsymbol{\beta}} = X (X^TX)^{-1} X^T \boldsymbol{y}\) and
the vector of residuals by \(\boldsymbol{e} =
\boldsymbol{y} - \hat{\boldsymbol{\mu}}\).
The equation for the fitted values just given, can be re-written
\(\hat{\boldsymbol{\mu}} = H \boldsymbol{y} =
\hat{\boldsymbol{y}}\) where H = X
(XTX)-1XT is often called the
hat matrix because it “puts hats on things”!
We have the equality \(\hat{\boldsymbol{y}}
= \hat{\boldsymbol{\mu}}\) because we use the same values for
prediction and mean estimation.
Covariance Matrices
The variance-covariance (or simple covariance, or dispersion
matrix) has variances down the diagonal and covariances off the
diagonal.
It can be shown that for a matrix M and random vector
\(\boldsymbol{z}\) (of appropriate
dimensions) \[\mbox{Var} (M\boldsymbol{z}) =
M \mbox{Var} (\boldsymbol{z}) M^T.\]
The Covariance Matrix for \(\hat{\boldsymbol{\beta}}\)
The covariance matrix of \(\hat{\boldsymbol{\beta}}\) is
\[\begin{aligned}
\mbox{Var}(\hat{\boldsymbol{\beta}}) = \mbox{Var}[ (X^TX)^{-1} X^T
\boldsymbol{y} ] &=& (X^TX)^{-1} X^T \mbox{Var}(\boldsymbol{y})
[(X^TX)^{-1} X^T]^T\\
&=& (X^TX)^{-1} X^T \sigma^2 I [(X^TX)^{-1} X^T]^T\\
&=& \sigma^2 (X^TX)^{-1} X^TX (X^T X)^{-1}\\
&=& \sigma^2 (X^TX)^{-1}\end{aligned}\]
We can use \(\mbox{Var}(\boldsymbol{y}) =
\sigma^2 I\) since the responses are independent and hence
uncorrelated.
The leading diagonal of this matrix is the basis for the standard
errors of our parameter estimates seen in our regression output. is
LS0tDQp0aXRsZTogIkxlY3R1cmUgMTM6IE1hdHJpY2VzIGFuZCBMaW5lYXIgUmVncmVzc2lvbiBNb2RlbHMiDQpzdWJ0aXRsZTogMTYxLjI1MSBSZWdyZXNzaW9uIE1vZGVsbGluZw0KYXV0aG9yOiAiUHJlc2VudGVkIGJ5IEpvbmF0aGFuIEdvZGZyZXkgPGEuai5nb2RmcmV5QG1hc3NleS5hYy5uej4iICANCmRhdGU6ICJXZWVrIDQgb2YgU2VtZXN0ZXIgMiwgYHIgbHVicmlkYXRlOjp5ZWFyKGx1YnJpZGF0ZTo6bm93KCkpYCINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgdGhlbWU6IHlldGkNCiAgICBoaWdobGlnaHQ6IHRhbmdvDQogIGh0bWxfbm90ZWJvb2s6DQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIHRoZW1lOiB5ZXRpDQogICAgaGlnaGxpZ2h0OiB0YW5nbw0KICBpb3NsaWRlc19wcmVzZW50YXRpb246DQogICAgd2lkZXNjcmVlbjogdHJ1ZQ0KICAgIHNtYWxsZXI6IHRydWUNCiAgd29yZF9kb2N1bWVudDogZGVmYXVsdA0KICBzbGlkeV9wcmVzZW50YXRpb246IA0KICAgIHRoZW1lOiB5ZXRpDQogICAgaGlnaGxpZ2h0OiB0YW5nbw0KICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQNCi0tLQ0KDQoNCg0KDQo8IS0tLSBEYXRhIGlzIG9uDQpodHRwczovL3ItcmVzb3VyY2VzLm1hc3NleS5hYy5uei9kYXRhLzE2MTI1MS8NCi0tLT4NCg0KYGBge3Igc2V0dXAsIHB1cmw9RkFMU0UsIGluY2x1ZGU9RkFMU0V9DQpsaWJyYXJ5KGtuaXRyKQ0Kb3B0c19jaHVuayRzZXQoZGV2PWMoInBuZyIsICJwZGYiKSkNCm9wdHNfY2h1bmskc2V0KGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTcsIGZpZy5wYXRoPSJGaWd1cmVzLyIsIGZpZy5hbHQ9InVubGFiZWxsZWQiKQ0Kb3B0c19jaHVuayRzZXQoY29tbWVudD0iIiwgZmlnLmFsaWduPSJjZW50ZXIiLCB0aWR5PVRSVUUpDQpvcHRpb25zKGtuaXRyLmthYmxlLk5BID0gJycpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoYnJvb20pDQpgYGANCg0KDQo8IS0tLSBEbyBub3QgZWRpdCBhbnl0aGluZyBhYm92ZSB0aGlzIGxpbmUuIC0tLT4NCg0KTGluZWFyIHJlZ3Jlc3Npb24gbW9kZWxzIGNhbiBiZSBjb252ZW5pZW50bHkgZXhwcmVzc2VkIHVzaW5nIG1hdHJpeCAgbm90YXRpb24uDQoNCkluIHRoaXMgbGVjdHVyZSwgd2Ugd2lsbCBzZWUgaG93IHJlc3VsdHMgZm9yIGxpbmVhciBtb2RlbHMgYXJlIG11Y2ggbW9yZSBlYXNpbHkgZGVyaXZlZCBhbmQgdW5kZXJzdG9vZCB1c2luZyBtYXRyaXggbm90YXRpb24gdGhhbiB3aXRob3V0IGl0Lg0KDQpBbHNvIG5vdGUgdGhhdCB0aGUgbWF0cml4IGFwcHJvYWNoIGlzIHdoYXQgaXMgYmVpbmcgZG9uZSBpbiB0aGUgYmFja2dyb3VuZCBieSBhbGwgZ29vZCBzdGF0aXN0aWNhbCBzb2Z0d2FyZSBpbmNsdWRpbmcgUi4NCg0KIyMgTWF0cml4IEZvcm11bGF0aW9uIG9mIHRoZSBMaW5lYXIgTW9kZWwNCg0KJCRcYm9sZHN5bWJvbHt5fSA9IFgge1xib2xkc3ltYm9se1xiZXRhfX0gKyB7XGJvbGRzeW1ib2x7XHZhcmVwc2lsb259fQ0KXGxhYmVse2VxOm1hdHJpeExNfSQkDQoNCndoZXJlICRcYm9sZHN5bWJvbHt5fSQgaXMgdGhlIHJlc3BvbnNlIHZlY3RvciwgKlgqIGlzIHRoZSAqKm1vZGVsIG1hdHJpeCoqLCAke1xib2xkc3ltYm9se1xiZXRhfX0kIGlzIHRoZSB2ZWN0b3Igb2YgKnArMSogcmVncmVzc2lvbiBwYXJhbWV0ZXJzLCBhbmQgJHtcYm9sZHN5bWJvbHtcdmFyZXBzaWxvbn19JCBpcyB0aGUgdmVjdG9yIG9mICpuKiBlcnJvciB0ZXJtcy4NCg0KJFxib2xkc3ltYm9se3l9ID0gXGxlZnQgWw0KXGJlZ2lue2FycmF5fXtjfQ0KeV8xXFwNCnlfMlxcDQpcdmRvdHNcXA0KeV9uDQpcZW5ke2FycmF5fSBccmlnaHQgXSQsICRYID0gXGxlZnQgWyBcYmVnaW57YXJyYXl9e2NjY2N9DQoxICYgeF97MTF9ICYgXGxkb3RzICYgeF97MXB9XFwNCjEgJiB4X3syMX0gJiBcbGRvdHMgJiB4X3sycH1cXA0KXHZkb3RzICYgXHZkb3RzICYgXGRkb3RzICYgXHZkb3RzXFwNCjEgJiB4X3tuMX0gJiBcbGRvdHMgJiB4X3tucH0NClxlbmR7YXJyYXl9IFxyaWdodCBdJCwgJFxib2xkc3ltYm9se1xiZXRhfSA9IFxsZWZ0IFsNClxiZWdpbnthcnJheX17Y30NClxiZXRhXzBcXA0KXGJldGFfMVxcDQpcdmRvdHNcXA0KXGJldGFfcFxcDQpcZW5ke2FycmF5fSBccmlnaHQgXSQsIGFuZCAkXGJvbGRzeW1ib2x7XHZhcmVwc2lsb259ID0gXGxlZnQgWw0KXGJlZ2lue2FycmF5fXtjfQ0KXHZhcmVwc2lsb25fMVxcDQpcdmFyZXBzaWxvbl8yXFwNClx2ZG90c1xcDQpcdmFyZXBzaWxvbl9uXFwNClxlbmR7YXJyYXl9DQpccmlnaHQgXSQNCg0KDQpUaGUgbWVhbiAoZXhwZWN0ZWQpIHZhbHVlIG9mIHRoZSByYW5kb20gdmVjdG9yICRcYm9sZHN5bWJvbHt5fSQgaXMNCiAgICAkJFxiZWdpbnthbGlnbmVkfQ0KICAgIFxib2xkc3ltYm9se1xtdX0gJj0mIEVbXGJvbGRzeW1ib2x7eX1dXFwNCiAgICAgJj0mIFxsZWZ0IFsgXGJlZ2lue2FycmF5fXtjfSANCiAgICBFW3lfMV0gXFwgRVt5XzJdIFxcIFx2ZG90cyBcXCBFW3lfbl0gXGVuZHthcnJheX0gXHJpZ2h0IF0gXFwNCiAgICAgJj0mIEVbWCB7XGJvbGRzeW1ib2x7XGJldGF9fSArIHtcYm9sZHN5bWJvbHtcdmFyZXBzaWxvbn19XVxcICY9JiBYIHtcYm9sZHN5bWJvbHtcYmV0YX19XGVuZHthbGlnbmVkfSQkDQoNCiAgLSBIZXJlIHdlIGhhdmUgdXNlZCB0aGUgcmVzdWx0IHRoYXQgZm9yIGEgcmFuZG9tIHZlY3RvciAkXGJvbGRzeW1ib2x7en0kLCBhDQogICAgbWF0cml4ICpNKiBhbmQgYSAobm9ucmFuZG9tKSB2ZWN0b3IgJFxib2xkc3ltYm9se2F9JA0KICAgICQkRVtcYm9sZHN5bWJvbHthfSArIE1cYm9sZHN5bWJvbHt6fV0gPSBcYm9sZHN5bWJvbHthfSArIE0gRVtcYm9sZHN5bWJvbHt6fV0kJA0KDQojIyMgTGVhc3QgU3F1YXJlcyBFc3RpbWF0aW9uIGJ5IE1hdHJpY2VzDQoNCkZvciBvYnNlcnZlZCByZXNwb25zZXMgJFxib2xkc3ltYm9se3l9JCB0aGUgc3VtIG9mIHNxdWFyZWQgZXJyb3JzIGNhbiBiZQ0KICAgIHdyaXR0ZW4gYXMgJCRTUyh7XGJvbGRzeW1ib2x7XGJldGF9fSkgPSAoXGJvbGRzeW1ib2x7eX0gLSBYIHtcYm9sZHN5bWJvbHtcYmV0YX19KV5UIChcYm9sZHN5bWJvbHt5fSAtIFgge1xib2xkc3ltYm9se1xiZXRhfX0pLiQkDQoNCiAgLSBUaGlzIGNhbiBiZSBtaW5pbWlzZWQgdXNpbmcgbXVsdGl2YXJpYXRlICh2ZWN0b3IpIGNhbGN1bHVzIHRvIGdpdmUNCiAgICB0aGUgbGVhc3Qgc3F1YXJlcyBlc3RpbWF0ZXMgYXMNCiAgICAkJFxoYXR7e1xib2xkc3ltYm9se1xiZXRhfX19ID0gKFheVCBYKV57LTF9IFheVCBcYm9sZHN5bWJvbHt5fS4kJA0KDQojIyMgSG93IGRpZCB0aGF0IG1hdHJpeCBzb2x1dGlvbiBjb21lIGFib3V0Pw0KDQpTdGFydCB3aXRoICQkWCBcaGF0e3tcYm9sZHN5bWJvbHtcYmV0YX19fSA9XGJvbGRzeW1ib2x7eX0kJCBhbmQgZG8gYSBzZXJpZXMgb2YgcHJlLW11bHRpcGxpY2F0aW9uczogRmlyc3QgYnkgJFheVCQgKHRoZSB0cmFuc3Bvc2Ugb2YgdGhlICRYJCBtb2RlbCBtYXRyaXguDQokJFheVCBYIFxoYXR7e1xib2xkc3ltYm9se1xiZXRhfX19ID0gWF5UIFxib2xkc3ltYm9se3l9JCQsIHRoZW4gdGhlIGludmVyc2Ugb2YgJChYXlQgWCkkIHRvIGdpdmUNCiQkKFheVCBYKV57LTF9IChYXlQgWCkgXGhhdHt7XGJvbGRzeW1ib2x7XGJldGF9fX0gPSAoWF5UIFgpXnstMX0gWF5UIFxib2xkc3ltYm9se3l9JCQuDQoNCkFueXRoaW5nIG11bHRpcGxpZWQgYnkgaXRzIGludmVyc2UgaXMgZXF1YWwgdG8gdGhlIGlkZW50aXR5IG1hdHJpeCwgYW5kIGNhbmNlbHMgaXRzZWxmIG91dCwgcnJlZHVjaW5nIHRoZSBsZWZ0IGhhbmQgc2lkZSB0byBiZSB0aGUgcGFyYW1ldGVyIGVzdGltYXRlcyAkXGhhdHt7XGJvbGRzeW1ib2x7XGJldGF9fX0kIHdlIHNlZWsuDQoNCiMjIyBTaW1wbGUgTGluZWFyIFJlZ3Jlc3Npb24gaW4gbWF0cml4IGZvcm0NCg0KRm9yIGEgc2ltcGxlIGxpbmVhciByZWdyZXNzaW9uIG1vZGVsIHRoZSBtb2RlbCBtYXRyaXggaXMNCiQkWCA9IFxsZWZ0IFsNClxiZWdpbnthcnJheX17Y2N9DQoxICYgeF97MX0gXFwNCjEgJiB4X3syfSBcXA0KXHZkb3RzICYgXHZkb3RzIFxcDQoxICYgeF97bn0NClxlbmR7YXJyYXl9DQpccmlnaHQgXSQkIElmIHdlIG9ic2VydmUgcmVzcG9uc2VzICRcYm9sZHN5bWJvbHt5fSQsIHRoZSBsZWFzdCBzcXVhcmVzIGVzdGltYXRlDQpvZiAke1xib2xkc3ltYm9se1xiZXRhfX0kIGlzOiAkJFxiZWdpbnthbGlnbmVkfQ0KXGhhdHtcYm9sZHN5bWJvbHtcYmV0YX19ICY9JiAoWF5UIFgpXnstMX0gWF5UIFxib2xkc3ltYm9se3l9ID0gDQpcbGVmdCBbDQpcYmVnaW57YXJyYXl9e2NjfQ0KbiAmIG4gXGJhcnt4fVxcDQpuXGJhcnt4fSAmIFxzdW1faSB4X2leMiANClxlbmR7YXJyYXl9DQpccmlnaHQgXV57LTF9IA0KXGxlZnQgWw0KXGJlZ2lue2FycmF5fXtjY2NjfQ0KMSAmIDEgJiBcbGRvdHMgJiAxIFxcDQp4XzEgJiB4XzIgJiBcbGRvdHMgJiB4X24gDQpcZW5ke2FycmF5fQ0KXHJpZ2h0IF0NClxsZWZ0IFsNClxiZWdpbnthcnJheX17Y30NCnlfMVxcDQp5XzJcXA0KXHZkb3RzXFwNCnlfbg0KXGVuZHthcnJheX0NClxyaWdodCBdIFxcDQogJj0mDQpcZnJhY3sxfXtuIHNfe3h4fX0gXGxlZnQgWw0KXGJlZ2lue2FycmF5fXtjY30NClxzdW1faSB4X2leMiAmIC0gbiBcYmFye3h9XFwNCi0gblxiYXJ7eH0gJiBuIA0KXGVuZHthcnJheX0NClxyaWdodCBdIA0KXGxlZnQgWyANClxiZWdpbnthcnJheX17Y30NCm4gXGJhcnt5fVxcDQpcc3VtX2kgeF9pIHlfaQ0KXGVuZHthcnJheX0NClxyaWdodCBdDQo9IA0KXGZyYWN7MX17c197eHh9fSBcbGVmdCBbIA0KXGJlZ2lue2FycmF5fXtjfQ0KXGJhcnt5fSBcc3VtX2kgeF9pXjIgLSBcYmFye3h9IFxzdW1faXt4X2kgeV9pfSBcXA0Kc197eHl9DQpcZW5ke2FycmF5fQ0KXHJpZ2h0IF1cZW5ke2FsaWduZWR9JCQNCg0KIyMgUHJlZGljdGlvbiBhbmQgVGhlIEhhdCBNYXRyaXgNCg0KVGhlIHZlY3RvciBvZiBmaXR0ZWQgdmFsdWVzIGlzIGdpdmVuIGJ5ICRcaGF0e1xib2xkc3ltYm9se1xtdX19ID0gWCBcaGF0e1xib2xkc3ltYm9se1xiZXRhfX0gPSBYIChYXlRYKV57LTF9IFheVCBcYm9sZHN5bWJvbHt5fSQgYW5kIHRoZSB2ZWN0b3Igb2YgcmVzaWR1YWxzIGJ5ICRcYm9sZHN5bWJvbHtlfSA9IFxib2xkc3ltYm9se3l9IC0gXGhhdHtcYm9sZHN5bWJvbHtcbXV9fSQuDQoNCg0KVGhlIGVxdWF0aW9uIGZvciB0aGUgZml0dGVkIHZhbHVlcyBqdXN0IGdpdmVuLCBjYW4gYmUgcmUtd3JpdHRlbiAkXGhhdHtcYm9sZHN5bWJvbHtcbXV9fSA9IEggXGJvbGRzeW1ib2x7eX0gPSBcaGF0e1xib2xkc3ltYm9se3l9fSQgIHdoZXJlICpIID0gWCAoWF5UXlgpXi0xXlheVF4qIGlzDQogICAgb2Z0ZW4gY2FsbGVkIHRoZSAqKmhhdCBtYXRyaXgqKiBiZWNhdXNlIGl0ICJwdXRzIGhhdHMgb24gdGhpbmdzIiENCg0KV2UgaGF2ZSB0aGUgZXF1YWxpdHkgJFxoYXR7XGJvbGRzeW1ib2x7eX19ID0gXGhhdHtcYm9sZHN5bWJvbHtcbXV9fSQgYmVjYXVzZSB3ZSB1c2UgdGhlDQogICAgc2FtZSB2YWx1ZXMgZm9yIHByZWRpY3Rpb24gYW5kIG1lYW4gZXN0aW1hdGlvbi4NCg0KIyMgQ292YXJpYW5jZSBNYXRyaWNlcw0KDQogIC0gVGhlIHZhcmlhbmNlLWNvdmFyaWFuY2UgKG9yIHNpbXBsZSBjb3ZhcmlhbmNlLCBvciBkaXNwZXJzaW9uIG1hdHJpeCkNCiAgICBoYXMgdmFyaWFuY2VzIGRvd24gdGhlIGRpYWdvbmFsIGFuZCBjb3ZhcmlhbmNlcyBvZmYgdGhlIGRpYWdvbmFsLg0KDQogIC0gSXQgY2FuIGJlIHNob3duIHRoYXQgZm9yIGEgbWF0cml4ICpNKiBhbmQgcmFuZG9tIHZlY3RvciAkXGJvbGRzeW1ib2x7en0kDQogICAgKG9mIGFwcHJvcHJpYXRlIGRpbWVuc2lvbnMpDQogICAgJCRcbWJveHtWYXJ9IChNXGJvbGRzeW1ib2x7en0pID0gTSBcbWJveHtWYXJ9IChcYm9sZHN5bWJvbHt6fSkgTV5ULiQkDQoNCiMjIFRoZSBDb3ZhcmlhbmNlIE1hdHJpeCBmb3IgJFxoYXR7XGJvbGRzeW1ib2x7XGJldGF9fSQNCg0KVGhlIGNvdmFyaWFuY2UgbWF0cml4IG9mICRcaGF0e1xib2xkc3ltYm9se1xiZXRhfX0kIGlzIA0KDQokJFxiZWdpbnthbGlnbmVkfQ0KICAgIFxtYm94e1Zhcn0oXGhhdHtcYm9sZHN5bWJvbHtcYmV0YX19KSA9IFxtYm94e1Zhcn1bIChYXlRYKV57LTF9IFheVCBcYm9sZHN5bWJvbHt5fSBdICY9JiAoWF5UWCleey0xfSBYXlQgXG1ib3h7VmFyfShcYm9sZHN5bWJvbHt5fSkgWyhYXlRYKV57LTF9IFheVF1eVFxcDQogICAgICAgICY9JiAoWF5UWCleey0xfSBYXlQgXHNpZ21hXjIgSSBbKFheVFgpXnstMX0gWF5UXV5UXFwNCiAgICAgICAgJj0mIFxzaWdtYV4yIChYXlRYKV57LTF9IFheVFggKFheVCBYKV57LTF9XFwNCiAgICAgICAgJj0mIFxzaWdtYV4yIChYXlRYKV57LTF9XGVuZHthbGlnbmVkfSQkDQoNCldlIGNhbiB1c2UgJFxtYm94e1Zhcn0oXGJvbGRzeW1ib2x7eX0pID0gXHNpZ21hXjIgSSQgc2luY2UgdGhlIHJlc3BvbnNlcyBhcmUNCiAgICBpbmRlcGVuZGVudCBhbmQgaGVuY2UgdW5jb3JyZWxhdGVkLg0KDQoNCi0gVGhlIHZhcmlhbmNlcyBleHByZXNzIHRoZSB2YXJpYWJpbGl0eSBvZiB0aGUgZXN0aW1hdG9ycyBmcm9tIHNhbXBsZQ0KICAgIHRvIHNhbXBsZS4NCg0KLSBUaGUgY292YXJpYW5jZXMgZGVzY3JpYmUgdGhlIGludGVyLWRlcGVuZGVuY2Ugb2YgZXN0aW1hdG9ycy4NCg0KDQpUaGUgbGVhZGluZyBkaWFnb25hbCBvZiB0aGlzIG1hdHJpeCBpcyB0aGUgYmFzaXMgZm9yIHRoZSBzdGFuZGFyZCBlcnJvcnMgb2Ygb3VyIHBhcmFtZXRlciBlc3RpbWF0ZXMgc2VlbiBpbiBvdXIgcmVncmVzc2lvbiBvdXRwdXQuDQppcyA=