This lecture follows on from last time when we used a factor as a
predictor in our model.
Tests for Heteroscedasticity
These are the same as for binary variables. The hypotheses for this
test are:
\(H_0\): error variance constant
across groups, versus
\(H_1\): error variance not constant
across groups
Rejecting the null means that the equal variance assumption is
violated.
As before, we can check using Bartlett’s test (if we think the
residuals look reasonably normal) or Levene’s test (needs the
car
package).
Caffeine.bt = bartlett.test(Taps ~ Dose, data = Caffeine)
Caffeine.bt
Bartlett test of homogeneity of variances
data: Taps by Dose
Bartlett's K-squared = 0.18767, df = 2, p-value = 0.9104
Caffeine.lv = leveneTest(Taps ~ factor(Dose), data = Caffeine)
Caffeine.lv
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 2 0.2819 0.7565
27
The P-value for both these tests is large, which confirms
that, for the caffeine data, we have no reason to doubt the constant
variance assumption.
Multiple Comparisons
In a factor model, the overall importance of the factor should be
assessed by performing an F test.
But sometimes we may have a particular question relating to the
relative outcomes at various factor levels that also requires testing.
This is OK.
If a factor is found to be significant, some researchers like to
compare the relative outcomes between many pairs of factor levels.
This is sometimes referred to as post hoc testing.
Post hoc means “after this” in Latin. Thus it is something you do after
establishing that the means are not all equal.
This should be done with care…
Caffeine Data Revisited
The parameter estimates for the caffeine data model were as
follows:
Caffeine.lm <- lm(Taps ~ Dose, data = Caffeine)
summary(Caffeine.lm)$coefficients
Estimate Std. Error t value Pr(>|t|)
(Intercept) 248.3 0.7047458 352.325610 5.456621e-51
DoseLow -1.9 0.9966611 -1.906365 6.729867e-02
DoseZero -3.5 0.9966611 -3.511725 1.584956e-03
Due to the treatment constraint, the estimates \(\hat \alpha_2 = 1.6\) and \(\hat \alpha_3 = 3.5\) represent
respectively the difference in mean response between the low dose and
control groups, and between the high dose and control groups.
Having found that Dose
is statistically significant, we
can investigate where the differences in mean response lie.
We could compare factor level means by formal tests:
Is the mean response at low level different from the control
group? A t-test of \(H_0\): \(\alpha_2 = 0\) versus \(H_1\): \(\alpha_2
\ne 0\) retains \(H_0\) (\(P=0.12\)); i.e. no difference between low
dose and control groups
Is the mean response at high level different from the control
group? A t-test of \(H_0\): \(\alpha_3 = 0\) versus \(H_1\): \(\alpha_3
\ne 0\) rejects \(H~0\) (\(P=0.002\)); ie. there is a difference
between high and control groups.
The Multiple Comparisons Problem
In the analysis below, the intercept has been dropped from the model.
That means the confidence intervals for the coefficients are in fact
confidence intervals for the mean Taps at each dose level. We see that
the CIs for \(\mu_1\) and for \(\mu_2\) overlap, but the CIs for \(\mu_1\) and \(\mu_3\) do not overlap. So can we conclude
that this is where the significant F-value comes from?
Caffeine.lm0 <- lm(Taps ~ 0 + Dose, data = Caffeine)
summary(Caffeine.lm0)
Call:
lm(formula = Taps ~ 0 + Dose, data = Caffeine)
Residuals:
Min 1Q Median 3Q Max
-3.400 -2.075 -0.300 1.675 3.700
Coefficients:
Estimate Std. Error t value Pr(>|t|)
DoseHigh 248.3000 0.7047 352.3 <2e-16 ***
DoseLow 246.4000 0.7047 349.6 <2e-16 ***
DoseZero 244.8000 0.7047 347.4 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.229 on 27 degrees of freedom
Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
F-statistic: 1.223e+05 on 3 and 27 DF, p-value: < 2.2e-16
2.5 % 97.5 %
DoseHigh 246.854 249.746
DoseLow 244.954 247.846
DoseZero 243.354 246.246
The problem is that there is not a precise equivalence between a
significant F-test result (judged as at the 5% significance level) and
what one might think by looking at the so-called 95% confidence
intervals. There is a technical issue called the Multiple Comparisons
Problem.
This relates to the fact that if we are comparing three group means,
then we are making three different two-group comparisons (Zero-Low,
Zero-High, Low-High).
So even if H0 is true (i.e. the only differences
that show up between group results are due to luck), then we have three
chances of one of those luck results appearing significant at the 5%
level.
If those three chances were independent (like tickets in three
different raffles) then we would have to say that the probability of
getting at least one result “significant” is nearly three times greater
(closer to 15%). This is unacceptable.
Our situation is somewhat more complicated as our three comparisons
are not independent (and hence neither are our three chances). But
nevertheless the fact is that we have close to three times the chance of
getting at least one significant two-group comparison just by luck.
So our 5% significance rule for Type I error goes out the window.
If we were comparing four groups we would have six different
inter-group comparisons. If we performed two-group comparisons between
every pair of factor levels for a factor with 20 levels, then we would
perform 190 tests. In that case even if \(H_0\) is true we would expect to get \(0.05\times 190\) =9.5 positive tests.
From all this we see that that the conclusion from CIs for the means
may not match up with the conclusion from an F test:
• if we have two non-overlapping confidence intervals then this
usually (but not always) indicates that the two group means
\(\mu_i\) and \(\mu_j\) (say) are different.
• if we have overlapping confidence intervals then this usually
(but not always) indicates that two group means \(\mu_i\) and \(\mu_j\) do not differ.
Solution to the multiple comparisons problem
So how do we fix things so that “chance” means the same thing in the
CIs as it does in the overall F test?
The answer is to use one of a collection of methods called
Post hoc analyses.
Bonferroni Correction for error inflation
The most common approach is to adjust the significance levels using
Bonferroni’s correction, which states that the significance level for
each individual test should be \(\alpha/N\) if we perform N
tests.
For example, consider a factor with 5 levels. Comparison of all pairs
of levels means \(N= \frac{K(K-1)}{2}
=10\) tests.
To keep the overall type I error to 5% (at most), the Bonferroni
correction says reject the null hypothesis for any individual test only
if the P-value is below a significance level of 0.05/10 =
0.005 = 0.5%.
However, the Bonferroni correction is very conservative, in the sense
that the overall significance level may be much lower than \(\alpha\). This can mean that it is hard to
spot significant effects.
Tukey HSD intervals
Since a CI for \(\mu_i-\mu_j\) is of
the form
\[ \bar X_i - \bar X_j \pm
\mbox{multiplier} \times
\mbox{standard error} \]
the straight-talking Statistician John Tukey developed an adjusted
multiplier. Tukey’s adjustment works for doing all two group
comparisons. He called his method Honest Statistical Differences. (The
name leaves no doubt about what he thought of other people’s
approaches.) It works off the output of an old ANOVA program called
aov().
tmc = TukeyHSD(aov(Taps ~ factor(Dose), data = Caffeine))
tmc
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = Taps ~ factor(Dose), data = Caffeine)
$`factor(Dose)`
diff lwr upr p adj
Low-High -1.9 -4.371139 0.5711391 0.1562593
Zero-High -3.5 -5.971139 -1.0288609 0.0043753
Zero-Low -1.6 -4.071139 0.8711391 0.2606999
The CIs and p-value show only one pair of means have a significant
difference. The plot is optional and just helps us visualise the
results: if the CI includes zero then the means are not significantly
different.
Dunnett intervals
Dunnett intervals use a different multiplier because they just
compare each group to a control level. So for the Caffeine analysis that
is just two comparisons instead of three. The benefit of Dunnett
intervals is narrower intervals than for Tukey, since we don’t have to
adjust for so many chance ‘significant’ results. To use it, one needs to
load the package DescTools.
library(DescTools)
DunnettTest(Taps ~ factor(Dose), control = "Zero", data = Caffeine)
Dunnett's test for comparing several treatments with a control :
95% family-wise confidence level
$Zero
diff lwr.ci upr.ci pval
High-Zero 3.5 1.1741746 5.825825 0.0030 **
Low-Zero 1.6 -0.7258254 3.925825 0.2065
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Discussion
Post hoc multiple comparisons are problematic, both in terms of the
interpretation of test results and how they control for type I error
(the significant level).
The type I error problem can be partially resolved by using arbitrary
adjustment of the significance level of each test (e.g. Bonferroni
adjustment \(\alpha/
\frac{K(K-1)}{2}\)) or some other adjustment of the
multiplier.
The problem of interpretation of test results is more difficult. In
the end some statisticians feel that multiple post hoc comparisons are
often best avoided, and advocate simply inspecting parameter estimates
as typically a good way to examine the inter-group differences. However
one must remember that conclusions may need to be “taken with a grain of
salt”.
LS0tDQp0aXRsZTogIkxlY3R1cmUgMjA6IERpYWdub3N0aWNzIGFuZCBNdWx0aXBsZSBDb21wYXJpc29ucyBmb3IgT25ld2F5IEFOT1ZBIg0Kc3VidGl0bGU6IDE2MS4yNTEgUmVncmVzc2lvbiBNb2RlbGxpbmcNCmF1dGhvcjogIlByZXNlbnRlZCBieSBKb25hdGhhbiBHb2RmcmV5IDxhLmouZ29kZnJleUBtYXNzZXkuYWMubno+IiAgDQpkYXRlOiAiV2VlayA3IG9mIFNlbWVzdGVyIDIsIGByIGx1YnJpZGF0ZTo6eWVhcihsdWJyaWRhdGU6Om5vdygpKWAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIHRoZW1lOiB5ZXRpDQogICAgaGlnaGxpZ2h0OiB0YW5nbw0KICBodG1sX25vdGVib29rOg0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCiAgICB0aGVtZTogeWV0aQ0KICAgIGhpZ2hsaWdodDogdGFuZ28NCiAgaW9zbGlkZXNfcHJlc2VudGF0aW9uOg0KICAgIHdpZGVzY3JlZW46IHRydWUNCiAgICBzbWFsbGVyOiB0cnVlDQogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQNCiAgc2xpZHlfcHJlc2VudGF0aW9uOiANCiAgICB0aGVtZTogeWV0aQ0KICAgIGhpZ2hsaWdodDogdGFuZ28NCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQotLS0NCg0KDQoNCg0KDQpbVmlldyB0aGUgbGF0ZXN0IHJlY29yZGluZyBvZiB0aGlzIGxlY3R1cmVdKGh0dHBzOi8vUi1SZXNvdXJjZXMubWFzc2V5LmFjLm56L3ZpZGVvcy8yNTFMMjAubXA0KQ0KPCEtLS0gRGF0YSBpcyBvbg0KaHR0cHM6Ly9yLXJlc291cmNlcy5tYXNzZXkuYWMubnovZGF0YS8xNjEyNTEvDQotLS0+DQoNCmBgYHtyIHNldHVwLCBwdXJsPUZBTFNFLCBpbmNsdWRlPUZBTFNFfQ0KbGlicmFyeShrbml0cikNCm9wdHNfY2h1bmskc2V0KGRldj1jKCJwbmciLCAicGRmIikpDQpvcHRzX2NodW5rJHNldChmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD03LCBmaWcucGF0aD0iRmlndXJlcy8iLCBmaWcuYWx0PSJ1bmxhYmVsbGVkIikNCm9wdHNfY2h1bmskc2V0KGNvbW1lbnQ9IiIsIGZpZy5hbGlnbj0iY2VudGVyIiwgdGlkeT1UUlVFKQ0Kb3B0aW9ucyhrbml0ci5rYWJsZS5OQSA9ICcnKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KGJyb29tKQ0KYGBgDQoNCg0KPCEtLS0gRG8gbm90IGVkaXQgYW55dGhpbmcgYWJvdmUgdGhpcyBsaW5lLiAtLS0+DQoNCmBgYHtyIGV4dHJhTGlicmFyeSwgZWNobz1GQUxTRSxpbmNsdWRlPUZBTFNFfQ0KbGlicmFyeShjYXIpDQpsaWJyYXJ5KERlc2NUb29scykNCmBgYA0KDQpUaGlzIGxlY3R1cmUgZm9sbG93cyBvbiBmcm9tIGxhc3QgdGltZSB3aGVuIHdlIHVzZWQgYSBmYWN0b3IgYXMgYSBwcmVkaWN0b3IgaW4gb3VyIG1vZGVsLg0KDQoNCg0KIyMgRGlhZ25vc3RpY3MgZm9yIENhZmZlaW5lIERhdGENCg0KV2UgaGF2ZSB0ZXN0ZWQgd2hldGhlciB0aGUgc3BlZWQgb2Ygc3R1ZGVudHPigJkgZmluZ2VyIHRhcHBpbmcgaXMgcmVsYXRlZCB0byB0aGUgY2FmZmVpbmUgZG9zZSByZWNlaXZlZC4NCkFzIHVzdWFsLCB0aGUgdmFsaWRpdHkgb2Ygb3VyIGNvbmNsdXNpb25zIGlzIGNvbnRpbmdlbnQgb24gdGhlIGFkZXF1YWN5IG9mIHRoZSBmaXR0ZWQgbW9kZWwuIFdlIHNob3VsZCB0aGVyZWZvcmUgaW5zcGVjdCBzdGFuZGFyZCBtb2RlbCBkaWFnbm9zdGljcy4NCg0KDQpgciB4ZnVuOjplbWJlZF9maWxlKCIuLi8uLi9kYXRhL2NhZmZlaW5lLmNzdiIpYA0KDQpgYGB7ciBDYWZmZWluZSBwbG90LCBlY2hvPS0xLCBldmFsPS0yfQ0KQ2FmZmVpbmUgPC0gcmVhZC5jc3YoZmlsZT0iLi4vLi4vZGF0YS9jYWZmZWluZS5jc3YiLCBoZWFkZXI9VFJVRSkNCkNhZmZlaW5lIDwtIHJlYWQuY3N2KGZpbGU9ImNhZmZlaW5lLmNzdiIsaGVhZGVyPVQpDQoNCkNhZmZlaW5lLmxtPSBsbShUYXBzfmZhY3RvcihEb3NlKSxkYXRhPSBDYWZmZWluZSkNCg0KcGFyKG1mcm93PWMoMiwyKSkNCnBsb3QoQ2FmZmVpbmUubG0pDQpgYGANCg0KDQoNCiMjIyBDb21tZW50cyBvbiB0aGUgRGlhZ25vc3RpYyBQbG90cw0KDQpGb3IgYSBmYWN0b3IgIG1vZGVsLCB0aGUgZml0dGVkIHZhbHVlcyBhcmUgY29uc3RhbnQgd2l0aGluIGVhY2ggZ3JvdXAuIFRoaXMgZXhwbGFpbnMgdGhlIHZlcnRpY2FsIGxpbmVzIGluIHRoZSBsZWZ0LWhhbmQgcGxvdHMuDQoNCkEgKipiYWxhbmNlZCoqIGZhY3RvciAgZGVzaWduIGV4aXN0cyB3aGVuIHRoZSBzYW1lIG51bWJlcg0KICAgIG9mIG9ic2VydmF0aW9ucyBhcmUgdGFrZW4gYXQgZWFjaCBmYWN0b3IgbGV2ZWwuDQoNCldoZW4gdGhlIGRhdGEgYXJlIGJhbGFuY2VkIHRoZSBsZXZlcmFnZSBpcyBjb25zdGFudCwgc28gYSBwbG90IG9mDQogICAgdGhlIGxldmVyYWdlIHdvdWxkIGJlIHBvaW50bGVzcy4NCg0KQXMgYSByZXN1bHQsIFIgcHJvZHVjZXMgYSBwbG90IG9mIHN0YW5kYXJkaXplZCByZXNpZHVhbHMgYWdhaW5zdA0KICAgIGZhY3RvciBsZXZlbHMgZm9yIGJhbGFuY2VkIGZhY3RvciAgbW9kZWxzIGluIHBsYWNlIG9mIHRoZSB1c3VhbA0KICAgIHJlc2lkdWFscyB2ZXJzdXMgbGV2ZXJhZ2UgcGxvdC4NCg0KDQpGb3IgZmFjdG9yIG1vZGVscywgaXQgaXMgcGFydGljdWxhcmx5IGltcG9ydGFudCB0byBzY3J1dGluaXplIHRoZSBwbG90cyBmb3IgKipoZXRlcm9zY2VkYXN0aWNpdHkqKiAobm9uLWNvbnN0YW50IHZhcmlhbmNlKSwgd2hlbiB0aGUgZXJyb3IgdmFyaWFuY2UgY2hhbmdlcyBtYXJrZWRseSBiZXR3ZWVuIHRoZSBmYWN0b3IgbGV2ZWxzLg0KDQpXaGVuIGhldGVyb3NjZWRhc3RpY2l0eSBpcyBwcmVzZW50LCBhc3N1bXB0aW9uIEEzIGZhaWxzIGFuZCBjb25jbHVzaW9ucyBiYXNlZCBvbiAqRiogdGVzdHMgYmVjb21lIHVucmVsaWFibGUuDQoNClRoZSBkaWFnbm9zdGljIHBsb3RzIGRvIG5vdCBwcm92aWRlIGFueSByZWFzb24gdG8gZG91YnQgdGhlIGFwcHJvcHJpYXRlbmVzcyBvZiB0aGUgZml0dGVkIG1vZGVsLg0KDQojIyBUZXN0cyBmb3IgSGV0ZXJvc2NlZGFzdGljaXR5DQoNClRoZXNlIGFyZSB0aGUgc2FtZSBhcyBmb3IgYmluYXJ5IHZhcmlhYmxlcy4gIFRoZSBoeXBvdGhlc2VzIGZvciB0aGlzIHRlc3QgYXJlOg0KDQokSF8wJDogIGVycm9yIHZhcmlhbmNlIGNvbnN0YW50IGFjcm9zcyBncm91cHMsICAgdmVyc3VzDQoNCiRIXzEkOiAgZXJyb3IgdmFyaWFuY2Ugbm90IGNvbnN0YW50IGFjcm9zcyBncm91cHMNCg0KUmVqZWN0aW5nIHRoZSBudWxsIG1lYW5zIHRoYXQgdGhlIGVxdWFsIHZhcmlhbmNlIGFzc3VtcHRpb24gaXMgICAgIHZpb2xhdGVkLg0KDQpBcyBiZWZvcmUsIHdlIGNhbiBjaGVjayB1c2luZyAgIEJhcnRsZXR0J3MgdGVzdCAoaWYgd2UgdGhpbmsgdGhlIHJlc2lkdWFscyBsb29rIHJlYXNvbmFibHkgbm9ybWFsKSAgb3IgTGV2ZW5lJ3MgdGVzdCAgKG5lZWRzIHRoZSBgY2FyYCBwYWNrYWdlKS4NCg0KDQpgYGB7ciBnZXRMaWJyYXJ5fQ0KbGlicmFyeShjYXIpDQpgYGANCg0KYGBge3IgQ2FmZmVpbmUuYnR9DQpDYWZmZWluZS5idCA9IGJhcnRsZXR0LnRlc3QoVGFwcyB+IERvc2UsIGRhdGEgPSBDYWZmZWluZSkNCkNhZmZlaW5lLmJ0DQpDYWZmZWluZS5sdiA9IGxldmVuZVRlc3QoVGFwc34gIGZhY3RvcihEb3NlKSwgZGF0YSA9IENhZmZlaW5lKQ0KQ2FmZmVpbmUubHYNCmBgYA0KDQpUaGUgKlAqLXZhbHVlIGZvciBib3RoIHRoZXNlIHRlc3RzIGlzIGxhcmdlLCAgd2hpY2ggY29uZmlybXMgdGhhdCwgZm9yIHRoZSAgY2FmZmVpbmUgZGF0YSwgd2UgaGF2ZSBubyByZWFzb24gdG8gZG91YnQgdGhlIGNvbnN0YW50IHZhcmlhbmNlICBhc3N1bXB0aW9uLg0KDQoNCiMjIE11bHRpcGxlIENvbXBhcmlzb25zDQoNCkluIGEgZmFjdG9yIG1vZGVsLCB0aGUgb3ZlcmFsbCBpbXBvcnRhbmNlIG9mIHRoZSBmYWN0b3Igc2hvdWxkIGJlIGFzc2Vzc2VkICAgICBieSBwZXJmb3JtaW5nIGFuICpGKiB0ZXN0Lg0KDQpCdXQgc29tZXRpbWVzIHdlIG1heSBoYXZlIGEgcGFydGljdWxhciBxdWVzdGlvbiByZWxhdGluZyB0byB0aGUgcmVsYXRpdmUgb3V0Y29tZXMgYXQgdmFyaW91cyBmYWN0b3IgbGV2ZWxzIHRoYXQgYWxzbyAgICAgIHJlcXVpcmVzIHRlc3RpbmcuIFRoaXMgaXMgT0suDQoNCklmIGEgZmFjdG9yIGlzIGZvdW5kIHRvIGJlIHNpZ25pZmljYW50LCBzb21lIHJlc2VhcmNoZXJzIGxpa2UgdG8gICAgY29tcGFyZSB0aGUgcmVsYXRpdmUgb3V0Y29tZXMgYmV0d2VlbiBtYW55IHBhaXJzIG9mIGZhY3RvciBsZXZlbHMuDQoNClRoaXMgaXMgc29tZXRpbWVzIHJlZmVycmVkIHRvIGFzICoqcG9zdCBob2MgdGVzdGluZyoqLiBQb3N0IGhvYyBtZWFucyAiYWZ0ZXIgdGhpcyIgaW4gTGF0aW4uIFRodXMgaXQgaXMgc29tZXRoaW5nIHlvdSBkbyBhZnRlciBlc3RhYmxpc2hpbmcgdGhhdCB0aGUgbWVhbnMgYXJlIG5vdCBhbGwgZXF1YWwuDQogICAgDQpUaGlzIHNob3VsZCBiZSAgICAgZG9uZSB3aXRoIGNhcmUuLi4NCg0KIyMjIENhZmZlaW5lIERhdGEgUmV2aXNpdGVkDQoNClRoZSBwYXJhbWV0ZXIgZXN0aW1hdGVzIGZvciB0aGUgY2FmZmVpbmUgZGF0YSBtb2RlbCB3ZXJlIGFzIGZvbGxvd3M6DQogICAgDQoNCmBgYHtyIENhZmZlaW5lLmxtIH0NCkNhZmZlaW5lLmxtIDwtIGxtKFRhcHN+RG9zZSwgZGF0YT1DYWZmZWluZSkgDQpzdW1tYXJ5KENhZmZlaW5lLmxtKSRjb2VmZmljaWVudHMNCmBgYA0KICAgIA0KDQpEdWUgdG8gdGhlIHRyZWF0bWVudCBjb25zdHJhaW50LCB0aGUgZXN0aW1hdGVzDQogICAgJFxoYXQgXGFscGhhXzIgPSAxLjYkIGFuZCAkXGhhdCBcYWxwaGFfMyA9IDMuNSQgcmVwcmVzZW50DQogICAgcmVzcGVjdGl2ZWx5IHRoZSBkaWZmZXJlbmNlIGluIG1lYW4gcmVzcG9uc2UgYmV0d2VlbiB0aGUgbG93IGRvc2UNCiAgICBhbmQgY29udHJvbCBncm91cHMsIGFuZCBiZXR3ZWVuIHRoZSBoaWdoIGRvc2UgYW5kIGNvbnRyb2wgZ3JvdXBzLg0KDQoNCkhhdmluZyBmb3VuZCB0aGF0IGBEb3NlYCBpcyBzdGF0aXN0aWNhbGx5IHNpZ25pZmljYW50LCB3ZSBjYW4gaW52ZXN0aWdhdGUgKndoZXJlKiB0aGUgZGlmZmVyZW5jZXMgaW4gbWVhbiByZXNwb25zZSBsaWUuDQoNCldlIGNvdWxkIGNvbXBhcmUgZmFjdG9yIGxldmVsIG1lYW5zIGJ5IGZvcm1hbCB0ZXN0czoNCiAgICANCjEuICBJcyB0aGUgbWVhbiByZXNwb25zZSBhdCBsb3cgbGV2ZWwgZGlmZmVyZW50IGZyb20gdGhlIGNvbnRyb2wgZ3JvdXA/IEEgdC10ZXN0IG9mICRIXzAkOiAkXGFscGhhXzIgPSAwJCB2ZXJzdXMgJEhfMSQ6ICRcYWxwaGFfMiBcbmUgMCQgcmV0YWlucyAkSF8wJCAoJFA9MC4xMiQpOyBpLmUuIG5vIGRpZmZlcmVuY2UgYmV0d2VlbiBsb3cgZG9zZSBhbmQgY29udHJvbCBncm91cHMNCiAgICANCjIuICBJcyB0aGUgbWVhbiByZXNwb25zZSBhdCBoaWdoIGxldmVsIGRpZmZlcmVudCBmcm9tIHRoZSBjb250cm9sIGdyb3VwPyAgIEEgdC10ZXN0IG9mICRIXzAkOiAkXGFscGhhXzMgPSAwJCB2ZXJzdXMgJEhfMSQ6ICRcYWxwaGFfMyBcbmUgMCQgcmVqZWN0cyAkSH4wJCAoJFA9MC4wMDIkKTsgDQppZS4gdGhlcmUgaXMgYSBkaWZmZXJlbmNlIGJldHdlZW4gaGlnaCBhbmQgY29udHJvbCBncm91cHMuDQoNCg0KIyMjIFRoZSBNdWx0aXBsZSBDb21wYXJpc29ucyBQcm9ibGVtDQoNCkluIHRoZSBhbmFseXNpcyBiZWxvdywgdGhlIGludGVyY2VwdCBoYXMgYmVlbiBkcm9wcGVkIGZyb20gdGhlIG1vZGVsLiBUaGF0IG1lYW5zIHRoZSBjb25maWRlbmNlIGludGVydmFscyBmb3IgdGhlIGNvZWZmaWNpZW50cyBhcmUgaW4gZmFjdCBjb25maWRlbmNlIGludGVydmFscyAgZm9yIHRoZSBtZWFuIFRhcHMgYXQgZWFjaCBkb3NlIGxldmVsLiAgICBXZSBzZWUgdGhhdCB0aGUgQ0lzIGZvcg0KJFxtdV8xJCBhbmQgZm9yICRcbXVfMiQgb3ZlcmxhcCwgYnV0IHRoZSBDSXMgZm9yICRcbXVfMSQgYW5kICRcbXVfMyQgZG8gbm90IG92ZXJsYXAuIA0KU28gY2FuIHdlIGNvbmNsdWRlIHRoYXQgdGhpcyBpcyB3aGVyZSB0aGUgc2lnbmlmaWNhbnQgKkYqLXZhbHVlIGNvbWVzIGZyb20/IA0KDQpgYGB7ciBDYWZmZWluZS5sbTB9DQpDYWZmZWluZS5sbTAgPC0gbG0oVGFwc34wK0Rvc2UsIGRhdGE9Q2FmZmVpbmUpIA0Kc3VtbWFyeShDYWZmZWluZS5sbTApDQoNCmNvbmZpbnQoQ2FmZmVpbmUubG0wKQ0KYGBgDQoNClRoZSBwcm9ibGVtIGlzIHRoYXQgdGhlcmUgaXMgbm90IGEgcHJlY2lzZSBlcXVpdmFsZW5jZSBiZXR3ZWVuIGEgc2lnbmlmaWNhbnQgIEYtdGVzdCByZXN1bHQgKGp1ZGdlZCBhcyBhdCB0aGUgNSUgc2lnbmlmaWNhbmNlIGxldmVsKSBhbmQgd2hhdCBvbmUgbWlnaHQgdGhpbmsgYnkgbG9va2luZyBhdCB0aGUgc28tY2FsbGVkIDk1JSBjb25maWRlbmNlIGludGVydmFscy4gIFRoZXJlIGlzIGEgdGVjaG5pY2FsIGlzc3VlIGNhbGxlZCB0aGUgTXVsdGlwbGUgQ29tcGFyaXNvbnMgUHJvYmxlbS4gDQoNClRoaXMgcmVsYXRlcyB0byB0aGUgZmFjdCB0aGF0IGlmIHdlIGFyZSBjb21wYXJpbmcgdGhyZWUgZ3JvdXAgbWVhbnMsICB0aGVuIHdlIGFyZSBtYWtpbmcgdGhyZWUgZGlmZmVyZW50IHR3by1ncm91cCBjb21wYXJpc29ucyAoWmVyby1Mb3csIFplcm8tSGlnaCwgTG93LUhpZ2gpLiAgDQoNClNvIGV2ZW4gaWYgKkh+MH4qIGlzIHRydWUgKGkuZS4gdGhlIG9ubHkgZGlmZmVyZW5jZXMgdGhhdCBzaG93IHVwIGJldHdlZW4gZ3JvdXAgcmVzdWx0cyBhcmUgZHVlIHRvIGx1Y2spLCAgdGhlbiB3ZSBoYXZlIHRocmVlIGNoYW5jZXMgb2Ygb25lIG9mIHRob3NlIGx1Y2sgcmVzdWx0cyBhcHBlYXJpbmcgc2lnbmlmaWNhbnQgYXQgdGhlIDUlIGxldmVsLiAgICANCg0KSWYgdGhvc2UgdGhyZWUgY2hhbmNlcyB3ZXJlIGluZGVwZW5kZW50ICAobGlrZSB0aWNrZXRzIGluIA0KdGhyZWUgZGlmZmVyZW50IHJhZmZsZXMpICB0aGVuIHdlIHdvdWxkIGhhdmUgdG8gc2F5IHRoYXQgdGhlIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgYXQgbGVhc3Qgb25lIHJlc3VsdCDigJxzaWduaWZpY2FudOKAnSBpcyBuZWFybHkgdGhyZWUgdGltZXMgZ3JlYXRlciAoY2xvc2VyIHRvIDE1JSkuIFRoaXMgaXMgdW5hY2NlcHRhYmxlLg0KDQpPdXIgc2l0dWF0aW9uIGlzIHNvbWV3aGF0IG1vcmUgY29tcGxpY2F0ZWQgYXMgb3VyIHRocmVlIGNvbXBhcmlzb25zIGFyZSBub3QgaW5kZXBlbmRlbnQgKGFuZCBoZW5jZSBuZWl0aGVyIGFyZSBvdXIgDQp0aHJlZSBjaGFuY2VzKS4gICAgIEJ1dCBuZXZlcnRoZWxlc3MgdGhlIGZhY3QgaXMgdGhhdCB3ZQ0KaGF2ZSBjbG9zZSB0byB0aHJlZSB0aW1lcyB0aGUgY2hhbmNlIG9mIGdldHRpbmcgYXQgbGVhc3Qgb25lICBzaWduaWZpY2FudCB0d28tZ3JvdXAgY29tcGFyaXNvbiBqdXN0IGJ5IGx1Y2suICANCg0KU28gb3VyIDUlIHNpZ25pZmljYW5jZSBydWxlIGZvciBUeXBlIEkgZXJyb3IgZ29lcyBvdXQgdGhlIHdpbmRvdy4NCg0KSWYgd2Ugd2VyZSBjb21wYXJpbmcgZm91ciBncm91cHMgd2Ugd291bGQgaGF2ZSBzaXggZGlmZmVyZW50IGludGVyLWdyb3VwIGNvbXBhcmlzb25zLiAgIElmIHdlIHBlcmZvcm1lZCB0d28tZ3JvdXANCmNvbXBhcmlzb25zIGJldHdlZW4gZXZlcnkgcGFpciBvZiBmYWN0b3IgICBsZXZlbHMgZm9yIGEgZmFjdG9yIHdpdGggMjAgbGV2ZWxzLCB0aGVuIHdlIHdvdWxkIHBlcmZvcm0gMTkwIHRlc3RzLiANCkluIHRoYXQgY2FzZSBldmVuIGlmICRIXzAkIGlzIHRydWUgd2Ugd291bGQgZXhwZWN0IHRvIGdldCAkMC4wNVx0aW1lcyAxOTAkID1gciAwLjA1KjE5MGAgcG9zaXRpdmUgdGVzdHMuDQoNCkZyb20gYWxsIHRoaXMgd2Ugc2VlIHRoYXQgICB0aGF0IHRoZSBjb25jbHVzaW9uIGZyb20gQ0lzIGZvciB0aGUgbWVhbnMgbWF5IG5vdCBtYXRjaCB1cCB3aXRoIHRoZSBjb25jbHVzaW9uIGZyb20gYW4gRiB0ZXN0Og0KDQrigKIJaWYgd2UgaGF2ZSB0d28gbm9uLW92ZXJsYXBwaW5nIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIHRoZW4gdGhpcyAqdXN1YWxseSAoYnV0IG5vdCBhbHdheXMpKiBpbmRpY2F0ZXMgdGhhdCB0aGUgdHdvIGdyb3VwICBtZWFucyAkXG11X2kkIGFuZCAkXG11X2okIChzYXkpIGFyZSBkaWZmZXJlbnQuDQoNCuKAoglpZiB3ZSBoYXZlIG92ZXJsYXBwaW5nIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIHRoZW4gdGhpcyAqdXN1YWxseSAoYnV0IG5vdCBhbHdheXMpKiBpbmRpY2F0ZXMgdGhhdCB0d28gZ3JvdXAgbWVhbnMgJFxtdV9pJCBhbmQgJFxtdV9qJCAgIGRvIG5vdCBkaWZmZXIuDQoNCiMjIyBTb2x1dGlvbiB0byB0aGUgbXVsdGlwbGUgY29tcGFyaXNvbnMgcHJvYmxlbQ0KDQpTbyBob3cgZG8gd2UgZml4IHRoaW5ncyBzbyB0aGF0ICJjaGFuY2UiIG1lYW5zIHRoZSBzYW1lIHRoaW5nIGluIHRoZSBDSXMgYXMgaXQgZG9lcyBpbiB0aGUgb3ZlcmFsbCBGIHRlc3Q/IA0KIA0KVGhlIGFuc3dlciBpcyB0byB1c2Ugb25lIG9mIGEgY29sbGVjdGlvbiBvZiBtZXRob2RzIGNhbGxlZCAqKlBvc3QgaG9jKiogYW5hbHlzZXMuICANCg0KDQoNCiMjIyBCb25mZXJyb25pIENvcnJlY3Rpb24gZm9yIGVycm9yIGluZmxhdGlvbg0KDQpUaGUgbW9zdCBjb21tb24gYXBwcm9hY2ggaXMgdG8gYWRqdXN0IHRoZSBzaWduaWZpY2FuY2UgbGV2ZWxzIHVzaW5nICAgICAgQm9uZmVycm9uaeKAmXMgY29ycmVjdGlvbiwgd2hpY2ggc3RhdGVzIHRoYXQgdGhlIHNpZ25pZmljYW5jZSBsZXZlbCBmb3IgZWFjaCBpbmRpdmlkdWFsIHRlc3Qgc2hvdWxkDQogICAgYmUgJFxhbHBoYS9OJCBpZiB3ZSBwZXJmb3JtICpOKiB0ZXN0cy4NCg0KRm9yIGV4YW1wbGUsICBjb25zaWRlciBhIGZhY3RvciB3aXRoIDUgbGV2ZWxzLiBDb21wYXJpc29uIG9mIGFsbCBwYWlycyBvZiAgIGxldmVscyBtZWFucyAkTj0gXGZyYWN7SyhLLTEpfXsyfSA9MTAkDQp0ZXN0cy4NCiAgICANClRvIGtlZXAgdGhlIG92ZXJhbGwgdHlwZSBJIGVycm9yIHRvIDUlIChhdCBtb3N0KSwgdGhlIEJvbmZlcnJvbmkgICBjb3JyZWN0aW9uIHNheXMgcmVqZWN0IHRoZSBudWxsIGh5cG90aGVzaXMgZm9yIGFueSBpbmRpdmlkdWFsICAgIHRlc3Qgb25seSBpZiB0aGUgKlAqLXZhbHVlIGlzIGJlbG93IGEgc2lnbmlmaWNhbmNlIGxldmVsIG9mICowLjA1LzEwID0gMC4wMDUgPSAwLjUlKi4NCg0KSG93ZXZlciwgdGhlIEJvbmZlcnJvbmkgY29ycmVjdGlvbiBpcyB2ZXJ5IGNvbnNlcnZhdGl2ZSwgaW4gdGhlICAgICAgc2Vuc2UgdGhhdCB0aGUgb3ZlcmFsbCBzaWduaWZpY2FuY2UgbGV2ZWwgbWF5IGJlIG11Y2ggbG93ZXIgdGhhbiAgICAgJFxhbHBoYSQuIFRoaXMgY2FuIG1lYW4gdGhhdCBpdCBpcyBoYXJkIHRvIHNwb3Qgc2lnbmlmaWNhbnQgICAgIGVmZmVjdHMuDQoNCiMjIyBUdWtleSBIU0QgaW50ZXJ2YWxzDQoNClNpbmNlIGEgQ0kgZm9yICRcbXVfaS1cbXVfaiQgaXMgb2YgdGhlIGZvcm0NCg0KJCQgXGJhciBYX2kgLSBcYmFyIFhfaiAgXHBtIFxtYm94e211bHRpcGxpZXJ9IFx0aW1lcw0KXG1ib3h7c3RhbmRhcmQgZXJyb3J9ICQkDQoNCnRoZSBzdHJhaWdodC10YWxraW5nIFN0YXRpc3RpY2lhbiBKb2huIFR1a2V5ICBkZXZlbG9wZWQgYW4gYWRqdXN0ZWQgbXVsdGlwbGllci4gICBUdWtleSdzIGFkanVzdG1lbnQgd29ya3MgZm9yIA0KZG9pbmcgYWxsIHR3byBncm91cCBjb21wYXJpc29ucy4gIEhlIGNhbGxlZCBoaXMgbWV0aG9kIEhvbmVzdCBTdGF0aXN0aWNhbCBEaWZmZXJlbmNlcy4gKFRoZSBuYW1lIGxlYXZlcyBubyBkb3VidCBhYm91dCB3aGF0IGhlIHRob3VnaHQgb2Ygb3RoZXIgcGVvcGxlJ3MgYXBwcm9hY2hlcy4pICAgSXQgd29ya3Mgb2ZmIHRoZSBvdXRwdXQgb2YgYW4gb2xkIEFOT1ZBIHByb2dyYW0gY2FsbGVkIGFvdigpLiANCg0KYGBge3IgVHVrZXl9DQp0bWMgPVR1a2V5SFNEKGFvdihUYXBzfmZhY3RvcihEb3NlKSwgZGF0YT1DYWZmZWluZSkpDQp0bWMNCnBsb3QodG1jKQ0KYGBgDQoNClRoZSBDSXMgYW5kIHAtdmFsdWUgc2hvdyBvbmx5IG9uZSBwYWlyIG9mIG1lYW5zIGhhdmUgYSBzaWduaWZpY2FudCBkaWZmZXJlbmNlLiAgVGhlIHBsb3QgaXMgb3B0aW9uYWwgYW5kIGp1c3QgaGVscHMgdXMgdmlzdWFsaXNlIHRoZSByZXN1bHRzOiBpZiB0aGUgQ0kgaW5jbHVkZXMgemVybyB0aGVuIHRoZSBtZWFucyBhcmUgbm90IHNpZ25pZmljYW50bHkgZGlmZmVyZW50Lg0KDQoNCiMjIyBEdW5uZXR0IGludGVydmFscw0KDQpEdW5uZXR0IGludGVydmFscyB1c2UgYSBkaWZmZXJlbnQgbXVsdGlwbGllciBiZWNhdXNlIHRoZXkganVzdCBjb21wYXJlIGVhY2ggZ3JvdXAgdG8gYSBjb250cm9sIGxldmVsLiAgU28gZm9yIHRoZSBDYWZmZWluZSBhbmFseXNpcyB0aGF0IGlzIGp1c3QgdHdvIGNvbXBhcmlzb25zIGluc3RlYWQgb2YgIHRocmVlLiAgICBUaGUgYmVuZWZpdCBvZiBEdW5uZXR0IGludGVydmFscyBpcyAgbmFycm93ZXIgaW50ZXJ2YWxzIHRoYW4gZm9yIFR1a2V5LCBzaW5jZSB3ZSBkb24ndCBoYXZlIHRvIGFkanVzdCBmb3Igc28gbWFueSBjaGFuY2UgJ3NpZ25pZmljYW50JyByZXN1bHRzLiAgIFRvIHVzZSBpdCwgb25lIG5lZWRzIHRvIGxvYWQgdGhlIHBhY2thZ2UgRGVzY1Rvb2xzLg0KDQpgYGB7ciBEdW5uZXR0VGVzdH0NCmxpYnJhcnkoRGVzY1Rvb2xzKQ0KRHVubmV0dFRlc3QoVGFwcyB+IGZhY3RvcihEb3NlKSwgY29udHJvbCA9Ilplcm8iLCBkYXRhPUNhZmZlaW5lKQ0KYGBgDQoNCg0KIyMjIERpc2N1c3Npb24NCg0KUG9zdCBob2MgbXVsdGlwbGUgY29tcGFyaXNvbnMgYXJlIHByb2JsZW1hdGljLCBib3RoIGluIHRlcm1zIG9mIHRoZSBpbnRlcnByZXRhdGlvbiBvZiB0ZXN0IHJlc3VsdHMgYW5kIGhvdyB0aGV5IGNvbnRyb2wgZm9yIHR5cGUgSSBlcnJvciAodGhlIHNpZ25pZmljYW50IGxldmVsKS4gDQoNClRoZSB0eXBlIEkgZXJyb3IgcHJvYmxlbSBjYW4gYmUgcGFydGlhbGx5IHJlc29sdmVkIGJ5IHVzaW5nIGFyYml0cmFyeSBhZGp1c3RtZW50IG9mIHRoZSBzaWduaWZpY2FuY2UgbGV2ZWwgb2YgZWFjaCB0ZXN0ICAgKGUuZy4gQm9uZmVycm9uaSAgIGFkanVzdG1lbnQgJFxhbHBoYS8gXGZyYWN7SyhLLTEpfXsyfSQpICBvciBzb21lIG90aGVyIGFkanVzdG1lbnQgb2YgdGhlIG11bHRpcGxpZXIuIA0KDQpUaGUgcHJvYmxlbSBvZiBpbnRlcnByZXRhdGlvbiBvZiB0ZXN0IHJlc3VsdHMgaXMgbW9yZSBkaWZmaWN1bHQuIEluIHRoZSBlbmQgc29tZSBzdGF0aXN0aWNpYW5zIGZlZWwgdGhhdCAgICBtdWx0aXBsZSBwb3N0IGhvYyBjb21wYXJpc29ucyBhcmUgb2Z0ZW4gYmVzdCBhdm9pZGVkLCAgYW5kIGFkdm9jYXRlIHNpbXBseSBpbnNwZWN0aW5nIHBhcmFtZXRlciBlc3RpbWF0ZXMgYXMNCnR5cGljYWxseSBhIGdvb2Qgd2F5IHRvIGV4YW1pbmUgdGhlIGludGVyLWdyb3VwICBkaWZmZXJlbmNlcy4NCkhvd2V2ZXIgb25lIG11c3QgcmVtZW1iZXIgdGhhdCBjb25jbHVzaW9ucyBtYXkgbmVlZCB0byBiZSANCiJ0YWtlbiB3aXRoIGEgZ3JhaW4gb2Ygc2FsdCIuDQoNCg0K
Comments on the Diagnostic Plots
For a factor model, the fitted values are constant within each group. This explains the vertical lines in the left-hand plots.
A balanced factor design exists when the same number of observations are taken at each factor level.
When the data are balanced the leverage is constant, so a plot of the leverage would be pointless.
As a result, R produces a plot of standardized residuals against factor levels for balanced factor models in place of the usual residuals versus leverage plot.
For factor models, it is particularly important to scrutinize the plots for heteroscedasticity (non-constant variance), when the error variance changes markedly between the factor levels.
When heteroscedasticity is present, assumption A3 fails and conclusions based on F tests become unreliable.
The diagnostic plots do not provide any reason to doubt the appropriateness of the fitted model.