View the
latest recording of this lecture
We have looked previously at models with one and two factors.
In this lecture, we generalize to models with arbitrarily many
factors.
Models with Many Factors and Their Interactions
Suppose that we have a response variable and q factors.
The most complex model will include the qth order
interaction term and all lower order interactions and main effects.
\[Y_{ijkl} = \mu + \alpha_i + \beta_j +
\gamma_k + (\alpha\beta)_{ij} + (\beta\gamma)_{jk}
+(\alpha\gamma)_{ik} + (\alpha\beta\gamma)_{ijk} +
\varepsilon_{ijkl}\]
where \((\alpha\beta\gamma)_{ijk}\)
is a third order interaction.
All lower order (second order) interactions are also included in the
model.
The Principle of Marginality (a.k.a. Hierarchy Principle)
As usual, we will seek the simplest model that fits the data
adequately.
However, models that we consider should satisfy the following
constraint: if a model contains a particular interaction, then it must
also include all lower order interactions.
E.g., if a model includes the third order interaction
A:B:C
, then it should also include the two way interactions
A:B
, B:C
, and A:C
.
This is the Principle of Marginality (or Hierarchy
Principle).
Significance Testing
If an interaction involving a factor is significant, then we have
evidence that the factor is associated with the response even if its
main effect is not significant.
In an unbalanced model the order that the factors (and their
interactions) are listed is important in terms of what is being adjusted
for when conducting tests.
In an orthogonal design, the ordering of the factors is
unimportant.
Swimming Data Example
Experiment done to investigate the effect of various factors on
swimming speed. Time to swim one 25 metre lap is response.
Factors are indicator variables (1=yes, 0=no) for wearing shirt,
goggles, and flippers.
Design was complete and balanced 23 factorial (i.e. 3
factors each at 2 levels), with three replications at each
treatment.
swimming
R Code for Example
Reading in the Data
Download swim.csv
## Swim <- read.csv(file = "swim.csv", header = TRUE)
Swim
Time Shirt Goggles Flippers
1 16.55 1 1 1
2 17.22 1 1 1
3 17.70 1 1 1
4 21.53 1 1 0
5 22.49 1 1 0
6 22.50 1 1 0
7 17.77 1 0 1
8 17.43 1 0 1
9 18.70 1 0 1
10 23.78 1 0 0
11 24.29 1 0 0
12 24.89 1 0 0
13 16.14 0 1 1
14 16.39 0 1 1
15 16.40 0 1 1
16 19.97 0 1 0
17 19.95 0 1 0
18 20.32 0 1 0
19 16.85 0 0 1
20 17.80 0 0 1
21 16.81 0 0 1
22 22.63 0 0 0
23 22.81 0 0 0
24 22.31 0 0 0
ANOVA Table and model summary
Swim.lm <- lm(Time ~ Shirt * Goggles * Flippers, data = Swim)
anova(Swim.lm)
Analysis of Variance Table
Response: Time
Df Sum Sq Mean Sq F value Pr(>F)
Shirt 1 11.303 11.303 49.4595 2.829e-06 ***
Goggles 1 14.900 14.900 65.1998 4.915e-07 ***
Flippers 1 158.672 158.672 694.3430 1.314e-14 ***
Shirt:Goggles 1 0.057 0.057 0.2496 0.624161
Shirt:Flippers 1 1.766 1.766 7.7272 0.013388 *
Goggles:Flippers 1 3.368 3.368 14.7361 0.001449 **
Shirt:Goggles:Flippers 1 0.039 0.039 0.1716 0.684232
Residuals 16 3.656 0.229
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Call:
lm(formula = Time ~ Shirt * Goggles * Flippers, data = Swim)
Residuals:
Min 1Q Median 3Q Max
-0.64333 -0.28083 0.00833 0.25917 0.73333
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.5833 0.2760 81.825 < 2e-16 ***
Shirt 1.7367 0.3903 4.449 0.000404 ***
Goggles -2.5033 0.3903 -6.414 8.58e-06 ***
Flippers -5.4300 0.3903 -13.912 2.35e-10 ***
Shirt:Goggles 0.3567 0.5520 0.646 0.527345
Shirt:Flippers -0.9233 0.5520 -1.673 0.113817
Goggles:Flippers 1.6600 0.5520 3.007 0.008351 **
Shirt:Goggles:Flippers -0.3233 0.7806 -0.414 0.684232
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.478 on 16 degrees of freedom
Multiple R-squared: 0.9811, Adjusted R-squared: 0.9729
F-statistic: 118.8 on 7 and 16 DF, p-value: 1.369e-12
Model Diagnostic Plots
par(mfrow = c(2, 2))
plot(Swim.lm)
hat values (leverages) are all = 0.3333333
and there are no factor predictors; no plot no. 5
Where’s My Pizza?
Students did an experiment to investigate the effect of various
factors on pizza delivery time (response, in minutes).
Factors are:
Crust |
Thick crust? No=0, Yes=1 |
Coke |
Coke ordered? No=0, Yes=1 |
Bread |
Garlic bread? No=0, Yes=1 |
Download pizza.csv
- Design was complete and balanced \(2^3\) factorial (i.e. 3 factors each at 2
levels) with two replications at each treatment.
pizza image
Data source: Mackisack, M. S. (1994). What is the use of experiments
conducted by statistics students? Journal of Statistics
Education, 2.
Your task
Create the appropriate model for this experiment, and use the
following commands to answer the questions below.
anova(Pizza.lm)
coef(Pizza.lm)
Questions
Does the delivery time depend on whether or not coke is
ordered?
What is the estimated difference in mean delivery time
between:
Order A: thick crust, coke but not garlic bread.
Order B: coke, but no thick crust or garlic bread.
LS0tDQp0aXRsZTogIkxlY3R1cmUgNDQ6IEFwcGVuZGl4OiBNb2RlbHMgd2l0aCBNYW55IEZhY3RvcnMiDQpzdWJ0aXRsZTogMTYxLjI1MSBSZWdyZXNzaW9uIE1vZGVsbGluZw0KYXV0aG9yOiAiUHJlc2VudGVkIGJ5IEpvbmF0aGFuIEdvZGZyZXkgPGEuai5nb2RmcmV5QG1hc3NleS5hYy5uej4iICANCmRhdGU6ICJXZWVrIDggb2YgU2VtZXN0ZXIgMiwgYHIgbHVicmlkYXRlOjp5ZWFyKGx1YnJpZGF0ZTo6bm93KCkpYCINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgdGhlbWU6IHlldGkNCiAgICBoaWdobGlnaHQ6IHRhbmdvDQogIGh0bWxfbm90ZWJvb2s6DQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIHRoZW1lOiB5ZXRpDQogICAgaGlnaGxpZ2h0OiB0YW5nbw0KICBpb3NsaWRlc19wcmVzZW50YXRpb246DQogICAgd2lkZXNjcmVlbjogdHJ1ZQ0KICAgIHNtYWxsZXI6IHRydWUNCiAgd29yZF9kb2N1bWVudDogZGVmYXVsdA0KICBzbGlkeV9wcmVzZW50YXRpb246IA0KICAgIHRoZW1lOiB5ZXRpDQogICAgaGlnaGxpZ2h0OiB0YW5nbw0KICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQNCi0tLQ0KDQoNCg0KDQoNCltWaWV3IHRoZSBsYXRlc3QgcmVjb3JkaW5nIG9mIHRoaXMgbGVjdHVyZV0oaHR0cHM6Ly9SLVJlc291cmNlcy5tYXNzZXkuYWMubnovdmlkZW9zLzI1MUwzNi5tcDQpDQo8IS0tLSBEYXRhIGlzIG9uDQpodHRwczovL3ItcmVzb3VyY2VzLm1hc3NleS5hYy5uei9kYXRhLzE2MTI1MS8NCi0tLT4NCg0KYGBge3Igc2V0dXAsIHB1cmw9RkFMU0UsIGluY2x1ZGU9RkFMU0V9DQpsaWJyYXJ5KGtuaXRyKQ0Kb3B0c19jaHVuayRzZXQoZGV2PWMoInBuZyIsICJwZGYiKSkNCm9wdHNfY2h1bmskc2V0KGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTcsIGZpZy5wYXRoPSJGaWd1cmVzLyIsIGZpZy5hbHQ9InVubGFiZWxsZWQiKQ0Kb3B0c19jaHVuayRzZXQoY29tbWVudD0iIiwgZmlnLmFsaWduPSJjZW50ZXIiLCB0aWR5PVRSVUUpDQpvcHRpb25zKGtuaXRyLmthYmxlLk5BID0gJycpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoYnJvb20pDQpgYGANCg0KDQo8IS0tLSBEbyBub3QgZWRpdCBhbnl0aGluZyBhYm92ZSB0aGlzIGxpbmUuIC0tLT4NCg0KDQpXZSBoYXZlIGxvb2tlZCBwcmV2aW91c2x5IGF0IG1vZGVscyB3aXRoIG9uZSBhbmQgdHdvIGZhY3RvcnMuDQoNCkluIHRoaXMgbGVjdHVyZSwgd2UgZ2VuZXJhbGl6ZSB0byBtb2RlbHMgd2l0aCBhcmJpdHJhcmlseSBtYW55IGZhY3RvcnMuDQoNCiMjIE1vZGVscyB3aXRoIE1hbnkgRmFjdG9ycyBhbmQgVGhlaXIgSW50ZXJhY3Rpb25zDQoNClN1cHBvc2UgdGhhdCB3ZSBoYXZlIGEgcmVzcG9uc2UgdmFyaWFibGUgYW5kICpxKiBmYWN0b3JzLg0KDQpUaGUgbW9zdCBjb21wbGV4IG1vZGVsIHdpbGwgaW5jbHVkZSB0aGUgKnEqdGggb3JkZXIgaW50ZXJhY3Rpb24NCiAgICB0ZXJtIGFuZCBhbGwgbG93ZXIgb3JkZXIgaW50ZXJhY3Rpb25zIGFuZCBtYWluDQplZmZlY3RzLg0KDQokJFlfe2lqa2x9ID0gXG11ICsgXGFscGhhX2kgKyBcYmV0YV9qICsgXGdhbW1hX2sgKyAoXGFscGhhXGJldGEpX3tpan0gKyAoXGJldGFcZ2FtbWEpX3tqa30NCisoXGFscGhhXGdhbW1hKV97aWt9ICsgKFxhbHBoYVxiZXRhXGdhbW1hKV97aWprfSArIFx2YXJlcHNpbG9uX3tpamtsfSQkDQoNCndoZXJlICQoXGFscGhhXGJldGFcZ2FtbWEpX3tpamt9JCBpcyBhIHRoaXJkIG9yZGVyIGludGVyYWN0aW9uLg0KDQpBbGwgbG93ZXIgb3JkZXIgKHNlY29uZCBvcmRlcikgaW50ZXJhY3Rpb25zIGFyZSBhbHNvIGluY2x1ZGVkIGluIHRoZQ0KICAgIG1vZGVsLg0KDQojIyBUaGUgUHJpbmNpcGxlIG9mIE1hcmdpbmFsaXR5ICAoYS5rLmEuIEhpZXJhcmNoeSBQcmluY2lwbGUpDQoNCkFzIHVzdWFsLCB3ZSB3aWxsIHNlZWsgdGhlIHNpbXBsZXN0IG1vZGVsIHRoYXQgZml0cyB0aGUgZGF0YQ0KICAgIGFkZXF1YXRlbHkuDQoNCkhvd2V2ZXIsIG1vZGVscyB0aGF0IHdlIGNvbnNpZGVyIHNob3VsZCBzYXRpc2Z5IHRoZSBmb2xsb3dpbmcNCiAgICBjb25zdHJhaW50OiBpZiBhIG1vZGVsIGNvbnRhaW5zIGEgcGFydGljdWxhciBpbnRlcmFjdGlvbiwgdGhlbiBpdA0KICAgIG11c3QgYWxzbyBpbmNsdWRlIGFsbCBsb3dlciBvcmRlciBpbnRlcmFjdGlvbnMuDQoNCkUuZy4sIGlmIGEgbW9kZWwgaW5jbHVkZXMgdGhlIHRoaXJkIG9yZGVyIGludGVyYWN0aW9uIGBBOkI6Q2AsICAgIHRoZW4gaXQgc2hvdWxkIGFsc28gaW5jbHVkZSB0aGUgdHdvIHdheSBpbnRlcmFjdGlvbnMgYEE6QmAsICAgIGBCOkNgLCBhbmQgYEE6Q2AuDQoNClRoaXMgaXMgdGhlIFByaW5jaXBsZSBvZiBNYXJnaW5hbGl0eSAob3IgKkhpZXJhcmNoeSBQcmluY2lwbGUqKS4NCg0KDQojIyMgU2lnbmlmaWNhbmNlIFRlc3RpbmcNCg0KSWYgYW4gaW50ZXJhY3Rpb24gaW52b2x2aW5nIGEgZmFjdG9yIGlzIHNpZ25pZmljYW50LCB0aGVuIHdlIGhhdmUNCiAgICBldmlkZW5jZSB0aGF0IHRoZSBmYWN0b3IgaXMgYXNzb2NpYXRlZCB3aXRoIHRoZSByZXNwb25zZSBldmVuIGlmIGl0cw0KICAgIG1haW4gZWZmZWN0IGlzIG5vdCBzaWduaWZpY2FudC4NCg0KSW4gYW4gdW5iYWxhbmNlZCBtb2RlbCB0aGUgb3JkZXIgdGhhdCB0aGUgZmFjdG9ycyAoYW5kIHRoZWlyDQogICAgaW50ZXJhY3Rpb25zKSBhcmUgbGlzdGVkIGlzIGltcG9ydGFudCBpbiB0ZXJtcyBvZiB3aGF0IGlzIGJlaW5nDQogICAgYWRqdXN0ZWQgZm9yIHdoZW4gY29uZHVjdGluZyB0ZXN0cy4NCg0KSW4gYW4gb3J0aG9nb25hbCBkZXNpZ24sIHRoZSBvcmRlcmluZyBvZiB0aGUgZmFjdG9ycyBpcyB1bmltcG9ydGFudC4NCg0KIyMgTW9kZWwgRm9ybXVsYWUgaW4gUg0KDQpPbiB0aGUgcmlnaHQgaGFuZCBzaWRlIG9mIGEgbGluZWFyIG1vZGVsIGZvcm11bGEgaW4gUiwgc2luZ2xlICAgIHZhcmlhYmxlIG5hbWVzIGluZGljYXRlIGluY2x1c2lvbiBvZiBtYWluIGVmZmVjdHMgd2hpbGUgY29sb24gICAgc2VwYXJhdGVkIHZhcmlhYmxlIG5hbWVzIGluZGljYXRlIGludGVyYWN0aW9ucywgZS5nLsKgYEE6QmANCg0KVmFyaWFibGUgbmFtZXMg4oCYbXVsdGlwbGllZOKAmSB0b2dldGhlciBpbmRpY2F0ZXMgdGhlIGludGVyYWN0aW9uICAgIGJldHdlZW4gdGhvc2UgdGVybXMgdGhhdCBhcmUgbXVsdGlwbGllZCwgYW5kIGFsbCBsb3dlciBvcmRlciB0ZXJtcy4NCg0KRm9yIGV4YW1wbGUgIA0KICAgIGBBKkIqQyA9IEEgKyBCICsgQyArIEE6QiArIEI6QyArIEM6QSArIEE6QjpDYA0KDQpCcmFja2V0cyBjYW4gYmUgZXhwYW5kZWQgaW4gYSBtb2RlbCBmb3JtdWxhIGluIHRoZSBleHBlY3RlZCBtYW5uZXIuIEZvciBleGFtcGxlICANCiAgICBgKEErQikqQyA9IEEgKyBCICsgQyArIEE6QyArIEI6Q2ANCg0KIyMjIFIgRm9ybXVsYSBmcm9tIE1vZGVsIEVxdWF0aW9uDQoNClN1cHBvc2UgdGhhdCB3ZSBoYXZlIGZhY3RvcnMgKkEqLCAqQiosICpDKiBhbmQgKkQqIHdob3NlDQogICAgZWZmZWN0cyBhcmUgcmVwcmVzZW50ZWQgYnkgR3JlZWsgY2hhcmFjdGVycyBpbiB0aGUgb2J2aW91cyBtYW5uZXIuDQoNCkNvbnNpZGVyIHRoZSBtb2RlbCB3aXRoIChtYXRoZW1hdGljYWwpIGVxdWF0aW9uDQoNCiQkWV97aWprbG19ID0gXG11ICsgXGFscGhhX2kgKyBcYmV0YV9qICsgXGdhbW1hX2sgKyBcZGVsdGFfbCArIChcYmV0YVxnYW1tYSlfe2prfQ0KICAgICsoXGFscGhhXGdhbW1hKV97aWt9ICsgXHZhcmVwc2lsb25fe2lqa2xtfSQkDQoNClRoZSBSIGZvcm11bGEgZm9yIHRoaXMgbW9kZWwgaXMgIA0KICAgIGB5IH4gKEErQikqQyArIERgDQoNCiMjIFN3aW1taW5nIERhdGEgRXhhbXBsZQ0KDQoNCg0KRXhwZXJpbWVudCBkb25lIHRvIGludmVzdGlnYXRlIHRoZSBlZmZlY3Qgb2YgdmFyaW91cyBmYWN0b3JzIG9uIHN3aW1taW5nIHNwZWVkLg0KVGltZSB0byBzd2ltIG9uZSAyNSBtZXRyZSBsYXAgaXMgcmVzcG9uc2UuDQoNCg0KRmFjdG9ycyBhcmUgaW5kaWNhdG9yIHZhcmlhYmxlcyAoMT15ZXMsIDA9bm8pIGZvciB3ZWFyaW5nIHNoaXJ0LCBnb2dnbGVzLCBhbmQgZmxpcHBlcnMuIA0KDQpEZXNpZ24gd2FzIGNvbXBsZXRlIGFuZCBiYWxhbmNlZCAyXjNeIGZhY3RvcmlhbCAoaS5lLsKgMyBmYWN0b3JzIGVhY2ggYXQgMiBsZXZlbHMpLCB3aXRoIHRocmVlIHJlcGxpY2F0aW9ucyBhdCBlYWNoIHRyZWF0bWVudC4NCg0KIVtzd2ltbWluZ10oLi4vZ3JhcGhpY3Mvc3dpbS5qcGcpDQoNCg0KDQojIyMgUiBDb2RlIGZvciBFeGFtcGxlICANCg0KUmVhZGluZyBpbiB0aGUgRGF0YQ0KDQpgciB4ZnVuOjplbWJlZF9maWxlKCIuLi8uLi9kYXRhL3N3aW0uY3N2IilgDQoNCg0KYGBge3IgZ2V0U3dpbURhdGEsIGVjaG89LTEsIGV2YWw9LTJ9DQpTd2ltIDwtIHJlYWQuY3N2KGZpbGU9Ii4uLy4uL2RhdGEvc3dpbS5jc3YiLCBoZWFkZXI9VFJVRSkNClN3aW0gPC0gcmVhZC5jc3YoZmlsZT0ic3dpbS5jc3YiLCBoZWFkZXI9VFJVRSkNClN3aW0NCmBgYA0KDQoNCiMjIyBBTk9WQSBUYWJsZSBhbmQgbW9kZWwgc3VtbWFyeQ0KDQpgYGB7ciBTd2ltLmxtfQ0KU3dpbS5sbSA8LSBsbShUaW1lIH4gIFNoaXJ0KkdvZ2dsZXMqRmxpcHBlcnMsICBkYXRhPVN3aW0pDQphbm92YShTd2ltLmxtKQ0KYGBgDQoNCg0KDQpgYGB7ciB9DQpzdW1tYXJ5KFN3aW0ubG0pDQpgYGANCg0KIyMjICBDb21tZW50cw0KDQpCZWNhdXNlIHRoZSBleHBlcmltZW50YWwgZGVzaWduIGlzIG9ydGhvZ29uYWwsIGFsbCAqUCotdmFsdWVzIGluIHRoZQ0KICAgIEFOT1ZBIHRhYmxlIGNhbiBiZSBpbnRlcnByZXRlZCBhcyB1bmFkanVzdGVkIGZvciBvdGhlciBmYWN0b3JzLg0KDQpUaGUgaW50ZXJhY3Rpb25zIGBHb2dnbGVzOkZsaXBwZXJzYCBhbmQgYFNoaXJ0OkZsaXBwZXJzYCBhcmUgc3RhdGlzdGljYWxseSBzaWduaWZpY2FudC4gVGhpcyBpbmRpY2F0ZXMgdGhhdCB0aGUgZWZmZWN0IG9mIHdlYXJpbmcNCiAgICBhIHNoaXJ0IG9yIGdvZ2dsZXMgb24gc3dpbW1pbmcgc3BlZWQgZGVwZW5kcyBvbiB3aGV0aGVyIG9yIG5vdCB0aGUgc3dpbW1lciANCiAgICBpcyB3ZWFyaW5nIGZsaXBwZXJzLg0KDQpBbGwgb3RoZXIgaW50ZXJhY3Rpb25zIGFyZSBub3Qgc28gaW1wb3J0YW50Lg0KDQpUaGUgbWFpbiBlZmZlY3RzIGVzdGltYXRlcyBpbmRpY2F0ZSB0aGF0IGBHb2dnbGVzYCBhbmQgcGFydGljdWxhcmx5IGBGbGlwcGVyc2AgaW1wcm92ZQ0KICAgIHN3aW1taW5nIHNwZWVkIChyZWR1Y2UgKSwgd2hpbGUgYFNoaXJ0YCBzbG93cyB0aGUgc3dpbW1lci4NCg0KVGhlIChwb3NpdGl2ZSkgY29lZmZpY2llbnQgZm9yIHRoZSBgR29nZ2xlczpGbGlwcGVyc2AgdGVybSBpbmRpY2F0ZXMgdGhhdCB0aGUgY29tYmluYXRpb24gb2YNCiAgICBnb2dnbGVzIGFuZCBmbGlwcGVycyBkb2VzIG5vdCByZWR1Y2Ugc3dpbW1pbmcgdGltZSBieSBxdWl0ZSBhcyBtdWNoDQogICAgYXMgdGhlIG1haW4gZWZmZWN0cyBhbG9uZSB3b3VsZCBzdWdnZXN0Lg0KICAgIA0KV2Ugc2hvdWxkIGNoZWNrIG91ciBjb25jbHVzaW9uIGJ5IGRyb3BwaW5nIG9uZSBpbnRlcmFjdGlvbiB0ZXJtIGF0IGEgdGltZSwgdW50aWwgYSBzaW1wbGUgbW9kZWwgaXMgZm91bmQuIEZvciBicmV2aXR5IHdlIGdvIHRvIHRoZSBlbmQgb2YgdGhlIHByb2Nlc3MuIA0KDQpgYGB7ciBTd2ltLmxtMn0NClN3aW0ubG0yIDwtIGxtKFRpbWUgfiAgU2hpcnQrR29nZ2xlcypGbGlwcGVycywgIGRhdGE9U3dpbSkNCmFub3ZhKFN3aW0ubG0yLCBTd2ltLmxtKQ0Kc3VtbWFyeShTd2ltLmxtMikNCmBgYA0KDQoNCiMjIyAgTW9kZWwgRGlhZ25vc3RpYyBQbG90cw0KDQpgYGB7ciBwbG90U3dpbS5sbX0NCnBhcihtZnJvdz1jKDIsMikpDQpwbG90KFN3aW0ubG0pDQpgYGANCg0KDQojIyBXaGVyZeKAmXMgTXkgUGl6emE/DQoNCg0KU3R1ZGVudHMgZGlkIGFuIGV4cGVyaW1lbnQgIHRvIGludmVzdGlnYXRlIHRoZSBlZmZlY3Qgb2YgdmFyaW91cyBmYWN0b3JzIG9uDQogICAgcGl6emEgZGVsaXZlcnkgdGltZSAocmVzcG9uc2UsIGluIG1pbnV0ZXMpLg0KDQogIC0gRmFjdG9ycyBhcmU6DQogICAgDQogICAgfCAgfCAgICAgICAgICAgICAgICAgICAgICAgICAgIHwNCiAgICB8IDotIHwgOi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSB8DQogICAgfCBgQ3J1c3RgIHwgVGhpY2sgY3J1c3Q/IE5vPTAsIFllcz0xICB8DQogICAgfCAgYENva2VgIHwgQ29rZSBvcmRlcmVkPyBObz0wLCBZZXM9MSB8DQogICAgfCAgYEJyZWFkYCB8IEdhcmxpYyBicmVhZD8gTm89MCwgWWVzPTEgfA0KDQoNCmByIHhmdW46OmVtYmVkX2ZpbGUoIi4uLy4uL2RhdGEvcGl6emEuY3N2IilgDQoNCg0KICAgIA0KDQogIC0gRGVzaWduIHdhcyBjb21wbGV0ZSBhbmQgYmFsYW5jZWQgJDJeMyQgZmFjdG9yaWFsIChpLmUuwqAzIGZhY3RvcnMNCiAgICBlYWNoIGF0IDIgbGV2ZWxzKSB3aXRoIHR3byByZXBsaWNhdGlvbnMgYXQgZWFjaCB0cmVhdG1lbnQuDQoNCiFbcGl6emEgaW1hZ2VdKC4uL2dyYXBoaWNzL3BpenphLmpwZykNCg0KICANCg0KIERhdGEgc291cmNlOiBNYWNraXNhY2ssIE0uIFMuICgxOTk0KS4gV2hhdCBpcyB0aGUgdXNlIG9mDQpleHBlcmltZW50cyBjb25kdWN0ZWQgYnkgc3RhdGlzdGljcyBzdHVkZW50cz8gKkpvdXJuYWwgb2YNClN0YXRpc3RpY3MgRWR1Y2F0aW9uKiwgKioyKiouIA0KDQojIyMgIFlvdXIgdGFzaw0KDQoNCkNyZWF0ZSB0aGUgYXBwcm9wcmlhdGUgbW9kZWwgZm9yIHRoaXMgZXhwZXJpbWVudCwgYW5kIHVzZSB0aGUgZm9sbG93aW5nIGNvbW1hbmRzIHRvIGFuc3dlciB0aGUgcXVlc3Rpb25zIGJlbG93Lg0KDQpgYGB7ciBldmFsPUZBTFNFfQ0KYW5vdmEoUGl6emEubG0pDQpjb2VmKFBpenphLmxtKQ0KYGBgDQoNCiMjIyBRdWVzdGlvbnMNCg0KMS4gIERvZXMgdGhlIGRlbGl2ZXJ5IHRpbWUgZGVwZW5kIG9uIHdoZXRoZXIgb3Igbm90IGNva2UgaXMgb3JkZXJlZD8NCg0KMi4gIFdoYXQgaXMgdGhlIGVzdGltYXRlZCBkaWZmZXJlbmNlIGluIG1lYW4gZGVsaXZlcnkgdGltZSBiZXR3ZWVuOg0KICAgIA0KT3JkZXIgQTogdGhpY2sgY3J1c3QsIGNva2UgYnV0IG5vdCBnYXJsaWMgYnJlYWQuDQogICAgDQpPcmRlciBCOiBjb2tlLCBidXQgbm8gdGhpY2sgY3J1c3Qgb3IgZ2FybGljIGJyZWFkLg0KDQoNCg==
Comments
Because the experimental design is orthogonal, all P-values in the ANOVA table can be interpreted as unadjusted for other factors.
The interactions
Goggles:Flippers
andShirt:Flippers
are statistically significant. This indicates that the effect of wearing a shirt or goggles on swimming speed depends on whether or not the swimmer is wearing flippers.All other interactions are not so important.
The main effects estimates indicate that
Goggles
and particularlyFlippers
improve swimming speed (reduce ), whileShirt
slows the swimmer.The (positive) coefficient for the
Goggles:Flippers
term indicates that the combination of goggles and flippers does not reduce swimming time by quite as much as the main effects alone would suggest.We should check our conclusion by dropping one interaction term at a time, until a simple model is found. For brevity we go to the end of the process.